
Java vs. PHP: Security Implications of Language
Choice for Web Applications

James Walden, Maureen Doyle, Robert Lenhof, and John Murray

Department of Computer Science
Northern Kentucky University
Highland Heights, KY 41099

Abstract. While Java and PHP are two of the most popular languages
for open source web applications found at freshmeat.net, Java has had
a much better security reputation than PHP. In this paper, we examine
whether that reputation is deserved. We studied whether the variation
in vulnerability density is greater between languages or between differ-
ent applications written in a single language by comparing eleven open
source web applications written in Java with fourteen such applications
written in PHP. To compare the languages, we created a Common Vul-
nerability Metric (CVM), which is the count of four vulnerability types
common to both languages. Common Vulnerability Density (CVD) is
CVM normalized by code size. We measured CVD for two revisions of
each project, one from 2006 and the other from 2008. CVD values were
higher for the aggregate PHP code base than the Java code base, but
PHP had a better rate of improvement, with a decline from 6.25 to 2.36
vulnerabilities/KLOC compared to 1.15 to 0.63 in Java. These changes
arose from an increase in code size in both languages and a decrease in
vulnerabilities in PHP. The variation between projects was greater than
the variation between languages, ranging from 0.52 to 14.39 for Java and
0.03 to 121.36 in PHP for 2006. We used security and software metrics
to examine the sources of difference between projects.

Key words: web application security, security metrics, open source

1 Introduction

While Java and PHP are two of the most popular languages for open source web
applications found at Freshmeat [6], they have quite different security reputa-
tions. In this paper, we examine whether the variation in vulnerability density is
greater between languages or between different applications written in a single
language. We compare eleven open source web applications written in Java with
fourteen such applications written in PHP. We also analyzed the source code of
two different revisions of each of these applications to track the evolution of vul-
nerability density over time. PHP applications included both PHP 4 and PHP
5 code. The Java applications were compiled with Sun Java SE 6, but the 2006
versions of some applications had to be compiled with Sun Java SE 5.



Despite differences in security reputations, more than twice as many open
source web applications are written in PHP than Java, and twelve of the fourteen
PHP applications studied are more popular than any of the Java applications [6].
In part, PHP’s poor security reputation [9] arises from default language features
enabled in earlier versions of the language. However, these features have grad-
ually been turned off as defaults or removed from the language. For example,
the register globals feature which automatically created program variables from
HTTP parameters was turned off as default in PHP 4.2 and removed in PHP 6.

We measured security through the number of vulnerabilities of types common
to both languages as reported by a static analysis tool. Static analysis tools find
common secure programming errors by evaluating source code without executing
it. Static analysis has the advantage of being repeatable and checking all parts of
the code equally, unlike human code reviewers or vulnerability researchers. The
objective nature of static analysis makes it suitable for comparing different code
bases, though, like human reviewers, static analysis tools make mistakes at times.
We computed code size and complexity metrics and also a security resources
indicator metric [15] to examine the source of differences between projects.

We discuss related work in section 2 and study design in section 3. Overall
results are described in section 4, with section 5 analyzing results by vulnerabil-
ity type. Sections 6 and 7 examine software and security metrics to determine
the causes of differences between applications. Limitations of our analysis are
discussed in section 8. Section 9 finishes the paper, giving conclusions and de-
scribing future work.

2 Related Work

Coverity used their Prevent static analysis tool to analyze a large number of open
source projects written in C and C++ [3], using the static analysis vulnerability
density metric. Fortify analyzed a small number of Java projects [5] with their
static analysis tool, using the same metric. Nagappan used static analysis tools
to measure defect density [8] to predict post-release defects. Note that defect
density may not correlate with vulnerability density, as security flaws differ from
reliability flaws.

Ozment and Schechter [12] and Li et. al. [7] studied how the number of
security issues evolves over time. Ozment found a decrease in OpenBSD, while
Li found an increase in both Mozilla and Apache.

Shin [14] and Nagappan et. al. [10] analyzed correlations of cyclomatic com-
plexity with vulnerabilities. They had mixed results, with Shin finding a weak
correlation for Mozilla and Nagappan finding three projects out of five having
strong correlations. Shin also analyzed nesting complexity, finding significant but
weak correlations with vulnerabilities for Mozilla.

Neuhaus and Zimmerman [11] studied the effect of dependencies on vulner-
abilities in several thousand Red Hat Linux packages. Zimmerman et. al. [16]
analyzed the problem of predicting defects based on information from other



projects, finding that only 3.4% of cross-project predictions were both signifi-
cant and had strong correlation coefficients.

3 Study Design

We examined the project history of 25 open source web applications, eleven
of which were written in Java, fourteen of which were written in PHP. The
applications are listed in table 1.

Table 1. Open Source Web Applications

Java PHP

alfresco contelligent daisywiki achievo obm roundcube
dspace jackrabbit jamwiki dotproject phpbb smarty
lenya ofbiz velocity gallery2 phpmyadmin squirrelmail
vexi xwiki mantisbt phpwebsite wordpress

mediawiki po

To be selected, an application had to have a source code repository with
revisions ranging from July 2006 to July 2008. The selected applications were
the only applications that had revisions from those periods that could be built
from source code in their repositories. While most third-party PHP libraries
can be found in the PEAR or PECL repositories, third-party Java libraries are
scattered among a variety of sites. Java developers often use tools like Maven to
retrieve third-party software and manage builds.

Eight Java applications were not included in the study because they could
not be built due to missing third-party software. Some older revisions used repos-
itories of third-party tools that no longer existed, in which case we modified the
Maven configuration to point to current repositories. This approach succeeded
in some cases, but failed in others, as current Maven repositories do not con-
tain every software version needed by older revisions. Some projects used other
techniques to fetch dependencies, including ivy and custom build scripts.

Only five of the PHP projects and none of the Java projects maintained a
public vulnerability database or had a security category in its bug tracker. While
there were 494 Common Vulnerabilities and Exposures (CVE) listings for the
PHP projects, there were only six such listings for the Java projects. The number
of CVE entries does not necessarily indicate that a project is more or less secure.
Due to the sparse and uneven nature of this data, documented vulnerabilities
could not be used to measure the security of these applications. Instead, we used
static analysis to find vulnerabilities in the source code of these applications.

We used Code Analyzer to compute SLOC, cyclomatic complexity, and nest-
ing complexity for Java, and SLOCCount and Code Sniffer for PHP. We used
Fortify Source Code Analyzer version 5.6 for static analysis. While there is no re-
lease quality free PHP static analysis tool, two of the Java web applications used



the free FindBugs [1] static analysis tool. No web application showed evidence
of use of a commercial static analysis tool in the form of files in the repository
(which is how we identified use of FindBugs) or web site documentation.

Vulnerability density can be measured using the static analysis vulnerability
density (SAVD) metric [15], which normalizes vulnerability counts by KSLOC
(thousand source lines of code.) However, Fortify finds 30 types of vulnerabilities
for Java and only 13 types for PHP in our set of applications, which prevents
SAVD from being compared directly between the two languages. Since only four
vulnerability types are shared between the two groups of applications we studied,
we created a common vulnerability metric (CVM), which is the sum of those four
vulnerability types, to more accurately compare results between Java and PHP.
Common vulnerability density (CVD) is CVM normalized by KSLOC.

The four common vulnerability types were cross-site scripting, SQL injection,
path manipulation, and code injection. Three of the four types are in the top
five application vulnerabilities reported by MITRE in 2007 [2]. The two missing
types from MITRE’s top five are PHP remote file inclusion, which is found only
in PHP, and buffer overflows, which are found in neither language.

4 Results

Examining the aggregate code base of the fourteen PHP applications, we found
that common vulnerability density declined from 6.25 vulnerabilities/KSLOC in
2006 to 2.36 in 2008, a decrease of 62.24%. Over the same period, CVD declined
from 1.15 in to 0.63 in the eleven Java applications, a decrease of 45.2%. Common
vulnerabilities in PHP declined from 5425 to 3318, while common vulnerabilities
increased from 5801 to 7045 in Java. The decrease in density for Java is the
result of a tremendous increase in code size, from 5 million to 11 million SLOC.
The expansion of the PHP code base was much smaller, from 870,000 to 1.4
million SLOC.

Java projects were larger on average than PHP projects. While one Java
project, xwiki, had over a million of lines of code, the other ten Java projects
ranged from 30,000 to 500,000 lines. The largest PHP project had 388,000 lines,
and the smallest had under 6,000 lines, with the other twelve ranging from
25,000 to 150,000 lines. This difference tends to support the contention that PHP
requires fewer lines of code to implement functionality than Java, especially as
projects implementing the same type of software, such as wikis, were smaller in
PHP than Java.

If we compare all vulnerability types, including all 30 categories of Java vul-
nerabilities and 13 categories of PHP vulnerabilities, we find that the vulnerabil-
ity density of the Java code base decreased from 5.87 to 3.85, and PHP decreased
from 8.86 to 6.02 from 2006 to 2008. The total number of PHP vulnerabilities
increased from 7730 to 8459, while the total number of Java vulnerabilities in-
creased from 29,473 to 42,581.

CVD varied much more between projects than between languages. In 2006,
PHP projects ranged from 0.03 to 121.4 vulnerabilities/KLOC while Java projects



had a much smaller range from 0.52 to 14.39. In 2008, both ranges shrank, with
PHP projects varying from 0.03 to 60.41 and Java projects ranging from 0.04
to 5.96. Photo Organizer (po) had the highest CVD for both years. Figures 1
and 2 show change in vulnerability density between the initial and final revision
for each project. In sections 6 and 7, we examine some possible sources of these
differences between projects.

Fig. 1. Change in CVD for Java Fig. 2. Change in CVD for PHP

5 Vulnerability Type Analysis

In this section, we examine the four vulnerability types that make up the CVM:
cross-site scripting, SQL injection, path manipulation, and command injection.
Figure 3 shows the changes in each vulnerability type between 2006 and 2008
for the aggregate Java and PHP code bases. The number of vulnerabilities in all
four categories increased for Java, while they decreased for PHP.

Individual projects did not follow these overall patterns; two Java projects,
contelligent and jamwiki, had reductions in three of the four categories. No Java
project reduced the number of command injections. Two projects, alfresco and
jackrabbit, did not reduce the number of vulnerabilities in any category.

Despite the overall decrease for PHP, nine of the fourteen PHP applications
increased CVD. Two projects showed small decreases, while the remaining three
contributed the bulk of the vulnerability reductions: photo organizer, squirrel-
mail, and wordpress. Photo organizer is the only PHP project that saw a re-
duction in all four error types. Eight of the remaining PHP projects increased
cross-site scripting errors, and nine increased path manipulation errors.

We also examined the contribution of each vulnerability type to the overall
CVM and how that changed over the two years. Figure 4 compares the percentage
contribution of each of the four vulnerabilities to the total CVM for Java and
PHP projects in 2006 and 2008.



Fig. 3. Type Contribution to CVM Fig. 4. Type Changes: 2006-2008

The 2008 ranking of the contributions of each error type for both languages
and both years are the same: cross-site scripting, followed by path manipulation,
SQL injection, and Command Injection. The total number of command injections
is tiny compared to the other three types, which are found in MITRE’s top five.
The majority of the PHP change resulted from removing SQL injection flaws.
Cross-site scripting vulnerabilities showed the largest decrease in Java, though
the change was not as dramatic as the SQL injection reduction in PHP.

6 Software Metric Analysis

Based on prior work and research [3, 8, 10, 12, 13, 15], we selected software metrics
which had demonstrated correlations to vulnerability or defect density: cyclo-
matic complexity (CC) and nesting complexity. We used the same metric def-
initions as in [15], including three variants of each complexity metric: average,
total, and maximum. Average is computed per-function for PHP and per-class
for Java. While PHP 5 supports classes, these applications organized their code
primarily with functions.

Figure 5 displays the correlations of metrics to CVD for both revisions. Cor-
relation was computed using the Spearman rank correlation coefficient (ρ) since
no assumptions can be made about the underlying distributions.

Significant correlations were found for maximum cyclomatic complexity and
nesting complexity with change in CVD over the two year period (p = 0.02)
for Java projects, but no correlations are signficant for the remaining metrics.
While total code complexity is an indicator of changes in vulnerability density
for Java projects, there are no significant correlations between software metrics
and CVD for PHP projects.

We also compared change in metric values over the time period with change
in CVD. We found only one signficant correlation; CVD is negatively correlated
with SLOC for PHP projects. Since CVD decreased with time for this group of
projects while SLOC increased, this result is not unexpected.



Fig. 5. ∆Metric correlations to ∆CVD Fig. 6. Metric correlations to CVD

7 Security Resource Indicator

We measured the importance of security to a project by counting the public
security resources made available on the project web site. We used the secu-
rity resource indicator metric (SRI) [15], which is based on four items: security
documentation for application installation and configuration, a dedicated e-mail
alias to report security problems, a list of vulnerabilities specific to the appli-
cation, and documentation of secure development practices, such as techniques
to avoid common secure programming errors. The SRI metric is the sum of the
four indicator items, ranging from zero to four.

Six of the eleven Java projects had security documentation, but none of the
projects had any of the other three indicators. These results are similar to the
results of Fortify’s survey [5], in which only one of the eleven projects they
examined had a security e-mail alias and two had links to security information.
Their survey did not include the other components of the SRI metric.

PHP results were substantially different. While the percentage of projects
with security documentation was lower, with only five of the fourteen projects
having such documentation, six PHP projects had security e-mail contacts, five
had vulnerability databases, and four had secure coding documentation. While
there is no significant correlation of SRI with change in CVD, there is a significant
correlation (p < 0.05) with a strong Spearman rank correlation coefficient, ρ, of
0.67, of SRI with change in SAVD, counting all PHP vulnerability categories.

The difference in SRI may result from the differences in application popular-
ity. Open source PHP web applications are much more widely used than open
source Java web applications. Popular projects are more likely to have vulnera-
bilities listed in the National Vulnerability Database [15], and therefore have a
stronger incentive to track vulnerabilities and provide security contacts.

In addition to the greater number and higher Freshmeat popularity of PHP
applications, language popularity is also revealed in what languages are sup-
ported by web hosting providers. Sixteen of the top 25 web hosting providers
from webhosting.info listed supported languages: 87.5% supported PHP while
only 25% supported Java. Several of the top hosting providers offered hosting



for popular PHP applications, including Drupal, Joomla, Mambo, phpBB, and
WordPress. None provided hosting for specific Java web applications.

8 Analysis Limitations

The 25 open source web applications were the only projects found on freshmeat.
net that met our analysis criteria. Our analysis may not apply to other projects
that were not analyzed in this work. Different static analysis tools look for dif-
ferent types of vulnerability and use different analysis techniques, so the vul-
nerability density from one tool cannot be compared directly to another. Static
analysis tools also search for different vulnerabilities in different languages.

Static analysis tools report false positives, where a program mistakenly iden-
tifies a line of code as containing a vulnerability that it does not. Walden et.
al. [15] found that the Fortify static analysis tool had a false positive rate of
18.1% when examining web applications written in PHP. Coverity [3] found a
false positive rate of less than 14% for millions of lines of C and C++ code.

9 Conclusion

We found that Java web applications had a substantially lower CVD than similar
applications written in PHP, with 2008 values of 2.36 vulnerabilities/KSLOC
for PHP and 0.63 for Java. Both sets of applications improved from 2006 to
2008, with PHP improving faster due to a decrease in vulnerability count while
Java’s improvement was due to a lower rate of vulnerabilities being inserted
as code size grew. A large part of PHP’s decrease was from a decline in SQL
injection vulnerabilities, which could arise from higher usage of parameterized
query interfaces as hosting providers offered newer versions of PHP database
libraries.

The variation between projects was much greater than the variation between
languages, ranging from 0.52 to 14.39 vulnerabilities/KSLOC for Java and 0.03
to 121.36 in PHP for 2006. Eight of the PHP projects had higher vulnerability
densities in 2008 than 2006, while only three Java projects did. SRI was a use-
ful predictor of how vulnerabilities evolved in PHP projects, but not for Java
since none of the Java projects had security contacts or vulnerability listings.
Complexity metrics were useful predictors for Java but not PHP vulnerability
evolution.

In summary, programming language is not an important consideration in
developing secure open source web applications. The correlation coefficient, ρ =
−0.07, between language and CVD, was quite low, but it was not statistically
significant. However, neither language had a clear advantage over the other in
CVD over time and the variation between applications was much larger than the
variation between languages.



References

1. Ayewah, N., Pugh, W.J., Morgenthaler, D., Penix J., Zhou. Y.: Evaluating Static
Analysis Defect Warnings On Production Software. In: The 7th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, June
2007.

2. Christey, S.M. and Martin, R.A.: http://www.cve.mitre.org/docs/vuln-trends/
index.html, published May 22, 2007.

3. Coverity, Coverity Scan Open Source Report 2009, http://www.coverity.com/

scan/, September 23, 2009.
4. Fenton, N.E. and Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Ap-

proach, Brooks/Cole, Massachusetts, 1998.
5. Fortify Security Research Group and Larry Suto: Open Source Security Study. http:

//www.fortify.com/landing/oss/oss_report.jsp, July 2008.
6. http://freshmeat.net/, accessed September 27, 2009.
7. Li, Z., Tan, L., Wang, Xuanhui and Lu, Shan and Zhou, Yuanyuan and Zhai,

Chengxiang: Have things changed now?: an empirical study of bug characteristics in
modern open source software. In: Proceedings of the 1st workshop on Architectural
and system support for improving software dependability, Association of Computing
Machinery, New York, 2006, pp. 25-33.

8. Nagappan, N. and Ball, T: Static analysis tools as early indicators of pre-release
defect density. In: Proceedings of the 27th International Conference on Software
Engineering, Association of Computing Machinery, New York, 2005, pp. 580 - 586.

9. Shiflett, C.: PHP Security Consortium Redux. http://shiflett.org/blog/2005/
feb/php-security-consortium-redux.

10. Nagappan, N., Ball, T., and Zeller, A.: Mining Metrics to Predict Component Fail-
ures. In: Proceedings of the 28th International Conference on Software Engineering,
Association of Computing Machinery, New York, 2006, pp. 452 - 461.

11. Neuhaus, S., and Zimmerman, T.: The Beauty and the Beast: Vulnerabilities in Red
Hat’s Packages. In: Proceedings of the 2009 USENIX Annual Technical Conference
(USENIX 2009), San Diego, CA, USA, June 2009.

12. Ozment, A. and Schechter, S.E.: Milk or Wine: Does Software Security Improve
with Age?. In: Proceedings of the 15th USENIX Security Symposium, USENIX
Association, California, 2006, pp. 93-104.

13. Shin, Y. and Williams, L.: An Empirical Model to Predict Security Vulnerabilities
using Code Complexity Metrics. In: Proceedings of the 2nd International Sympo-
sium on Empirical Software Engineering and Measurement, Association for Com-
puting Machinery, New York, 2008, pp. 315-317.

14. Shin, Y. and Williams, L: Is Complexity Really the Enemy of Software Security?.
In: Quality of Protection Workshop at the ACM Conference on Computers and
Communications Security (CCS) 2008, Association for Computing Machinery, New
York, 2008, pp. 47-50.

15. Walden, J., Doyle, M., Welch, G., Whelan, M.: Security of Open Source Web Ap-
plications. In: Proceedings of the International Workshop on Security Measurements
and Metrics, IEEE, 2009.

16. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project
Defect Prediction. In: Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2009), Amsterdam, The Netherlands, August
2009.


