
Eliminating SQL Injection and Cross Site Scripting
Using Aspect Oriented Programming

Bojan Simic, James Walden
Department of Computer Science

Northern Kentucky University
Highland Heights, KY

Abstract. Security vulnerabilities in the web applications that we use to shop,
bank, and socialize online expose us to exploits that cost billions of dollars each
year. This paper describes the design and implementation of AspectShield, a
system designed to mitigate the most common web application vulnerabilities
without requiring costly and potentially dangerous modifications to the source
code of vulnerable web applications.

AspectShield uses Aspect Oriented Programming (AOP) techniques to
mitigate XSS and SQL Injection vulnerabilities in Java web applications.
AOP is a programming paradigm designed to address cross-cutting
concerns like logging that affect many modules of a program. AspectShield
uses the Fortify Source Code Analyzer to identify vulnerabilities, then
generates aspects that weave in code that mitigates Cross-Site Scripting
and SQL Injection vulnerabilities. At runtime, the application executes the
protective aspect code to mitigate security issues when a block of
vulnerable code is executed.

AspectShield was tested with three enterprise scale Java web applications. It
successfully mitigated SQL Injection and Cross-Site Scripting vulnerabilities
without significantly affecting performance. The use of AspectShield in these
enterprise level applications shows that AOP can effectively mitigate the two
top vulnerabilities of web applications in a cost and time effective manner.

Keywords: cross site scripting; xss; sql injection; SQLI, application security;
aspect oriented programming; AOP; aspectj; java; web application security

1 Introduction

Most web applications contain security vulnerabilities. A recent paper shows that 71%
of education, 58% of social networking, and 51% of retail websites are exposed to a
serious vulnerability every day [2], and that 64% of websites have at least one
information leakage vulnerability [3].

Securing web applications is an important but complicated task for any development
team. While new applications can be designed with security in mind, a significant
fraction of software consists of legacy applications that were not designed to be secure.
This paper describes AspectShield, a system that can be applied to both new and
legacy web applications to mitigate some of the most common vulnerabilities without
modifying the source code of those applications.

In theory, legacy web applications can be rewritten to be secure. However,
vulnerability remediation is expensive, with estimates of the cost of remediating a
single security vulnerability ranging from $160 to $11,000 per vulnerability, depending
on the type of vulnerability and its interaction with other code [22]. Web application
security consultant Jeremy Grossman noted "The struggle is how do you deal with an
enormous number of sites riddled with vulnerabilities? You can't just recode them. It's
a dollars and cents issue."

Modification of legacy web applications also introduces the risk of altering the
behavior of the application and introducing new defects [21]. Many organizations
prefer to avoid modifying legacy applications where possible. Development teams are
often afraid of modifying legacy applications, which unfortunately exacerbates the
problem by reducing experience with the legacy application, sometimes to the point
where no one who remains in the organization understands the application’s design or
code [21].

We designed AspectShield to mitigate vulnerabilities while avoiding the risk of
altering application behavior and avoiding the cost of remediating vulnerabilities
through alteration of the source code. This protection is implemented using Aspect
Oriented Programming (AOP) techniques. The use of AOP allows for security logic to
be developed independently of business logic. This separation of concerns produces a
code base uncluttered by logging, input validation, access control, and error handling
logic. While AspectShield does not modify application source code, it must have
access to the source code in order to identify vulnerabilities and to recompile the
application while weaving in vulnerability mitigating aspects generated by
AspectShield.

We chose to use AspectJ in this paper, as it is a mature implementation of AOP, that
has been in development by the Eclipse Foundation for over a decade. AspectJ is the
most widely used AOP system for the Java programming language. An AspectJ aspect
is composed of two major pieces:

1. The pointcut of an aspect is a pointer to well-defined sections of the

application’s source code (join points). In our system, a well-defined piece of
code can be the name of a vulnerable method name with a particular
signature.

2. The advice of an aspect defines the specific logic that is to be applied at each
join point identified by a corresponding pointcut. There are three types of
advice called before, after, and around that execute this logic before, after, or
instead of the join point. The AspectShield system uses the around advice to
execute validation algorithms in place of vulnerable sections of code
identified by the Fortify SCA.

Aspects are woven into the byte code of the application at compile time, while the
advice logic is executed at runtime at each block of code identified by pointcuts of the
aspects.

The remainder of this paper is composed of the following sections. Section 2 will
describe how the creation of the vulnerability mitigation aspects is accomplished.
Section 3 will describe the design of an AspectShield aspect. Section 4 will go into
detail about the algorithms used to mitigate SQL Injection and XSS attacks. Section 5

will provide the validation and results of an AspectShield implementation on several
open source projects. Sections 6, 7, and 8 will describe related work, future work, and
conclusions, respectively.

2 Generating the Security Aspects

AspectShield consists of three major steps: use of an external static analysis tool,
vulnerability location based on the output of static analysis tools, and generation of
aspects to mitigate the vulnerabilities and weaving of the aspects into the locations of
the vulnerabilities.

Step 1 - Source Code Analysis

We first locate vulnerabilities using the Fortify Source Code Analyzer (SCA) static
analysis tools. Fortify SCA is the winner of the 2011 CODiE awards for “Best Security
Solution” [32] and identifies more vulnerabilities than any other detection method.
The tool scans the web application source code for vulnerabilities, generating an XML
report as output. Counts of vulnerabilities of each type found by Fortify SCA for the
three open source web applications we used in this study are shown in Table 1 below.
We ignored vulnerability reports of other types for this paper, though we plan to study
them in future work.

Table 1. Fortify SCA Results

Application Analyzed XSS Vulnerabilities SQLI Vulnerabilities
Alfresco ECM 10 12
Apache OfBiz 869 737
JadaSite E-Commerce 11 76

Step 2 – Analyzing the SCA Results

Fortify SCA reports detailed information about vulnerabilities, including category,
file location, and line number. When we analyzed the Fortify SCA reports for a
number of web applications, we found that the root causes of XSS and SQL Injection
vulnerabilities were a small set of functions. Functions identified as root causes
include executeQuery() for SQL Injection and
request.getParameter()for XSS. We compiled a list of potentially vulnerable
functions, which were stored in XML files that AspectShield uses to generate
pointcuts to mitigate the vulnerabilities. The resulting XML files contained nine
functions where the static analysis tool found XSS vulnerabilities and eight different
definitions that correspond to potential SQL Injection vulnerabilities. For each of the
functions, information such as the function name, number of parameters, and parameter

types was recorded. If additional functions are discovered in the future, they can be
added to the XML configuration files.

When AspectShield starts, it parses reports of XSS and SQL Injection
vulnerabilities from the XML output of Fortify SCA. AspectShield asks the user to
select a mitigation type for each vulnerability, which is applied by weaving in an aspect
to apply that mitigation using the location information found in the SCA output.

Step 3 – Running the Aspect Generator

For each vulnerability reported by Fortify SCA, the user will be prompted to select a
mitigation type. Different types of mitigations are available for XSS and SQL Injection
vulnerabilities. AspectShield is designed to be used by a developer with prior
experience with the application that was analyzed. As it is possible for users to select
an incorrect mitigation, this user should be the person responsible for the security of
the application and have training in security coding and best practices. Unfortunately,
there is no universal input validation or encoding technique that could be applied to all
vulnerabilities, so AspectShield must ask the user for assistance.

For XSS vulnerabilities, an AspectShield user will be provided with a list of 14
options that range from various types of encoding to whitelisting. These options are
implemented using the OWASP Enterprise Security Application Programming
Interface (ESAPI) library [9]. ESAPI is a free, open source library of security controls
that is widely used by organizations ranging from American Express to the World
Bank. It is BSD licensed, enabling AspectShield to use it without introducing
licensing issues for commercial software. ESAPI features that we use to mitigate XSS
include JavaScript, CSS, HTML, and other types of encoding, along with whitelist
rulesets for validating data types such as email addresses and alphanumeric data.
AspectShield also allows the user to provide a custom regular expression for validating
input, since no library can anticipate every data type accepted by web applications.

For SQL Injection vulnerabilities, a user will be provided with the option to encode
the SQL query for either the Oracle or MySQL dialects of SQL. This limitation arises
from the fact that the ESAPI library only supports these two dialects of SQL. While
encoding is the only option available to the user for mitigating SQL Injection,
AspectShield implements additional measures to prevent exploitation of SQL Injection
vulnerabilities. These measures include the removal of multiple queries, tautology
detection, and the removal of SQL comments before a SQL query is executed.

Once the user selects the mitigations to implement for each vulnerability,
AspectShield uses its pointcut and advice templates to generate two aspects for XSS
and SQL Injection mitigation. Each selected mitigation is written to a map that is
defined and populated in the corresponding aspect’s constructor. The advice logic
identified in the advice template will then reference this map to determine which type
of mitigation should be applied based on the location of the join point.

Once the aspects have been generated, the application is ready to be recompiled
with AspectJ to weave in the aspects. AspectShield provides a static JAR file
containing the mitigation algorithms that will be linked into the application during

recompilation. The implementation of these algorithms is defined in the following
section.

3 AspectShield Design

In order to generate the SQL Injection and XSS mitigation aspects, we created
templates for the pointcut and corresponding advice for each of the vulnerable methods
that are intercepted to mitigate vulnerabilities.

The pointcut template contains placeholders for the method name, the method
signature, the pointcut designator, and a within string. All of the pointcuts in
AspectShield use the “call” designator, which allows a method to be intercepted
whenever it is called. The within string placeholder will be replaced with a list of
names of files in which the method should be intercepted. The method name and
parameters will be retrieved from AspectShield’s XML configuration files describing
potentially vulnerable functions. With the pointcut template created, it will be used to
create join points for all of the pieces of code where vulnerabilities were reported.

Fig. 1. Example of an AspectJ pointcut.

An aspect’s advice will be executed at every join point matched by the pointcut in

the application’s source code. The around advice used in this implementation executes
code in place of the join point it operates over. Since it can have a return value, it must
be given a return type (Figure 2).

Fig. 2. Example of an AspectJ Advice

Inside of the around advice, the original join point can be executed using the

proceed function which takes the same arguments as the join point. Much like the
pointcut template defined above, the advice template contains placeholders that are
populated when AspectShield is executed. The advice will have a corresponding name
equal to the pointcut that it will execute upon. Depending on whether the aspect being

created is for XSS or SQL Injection mitigation, the advice will make a call to the
appropriate validation algorithm that will do the mitigation. The algorithm will be
provided the original, potentially malicious, parameters for each join point and will
return a safe value.

The advice also contains logic to determine whether or not the user elected to
provide mitigation for a particular join point. In the event that the call to the mitigation
algorithm fails, the advice will execute its proceed() method with the pointcut’s
default parameters in order to maintain the application’s normal execution flow. This
ensures that AspectShield will not break any of the application’s functionality.
AspectShield’s first priority is to maintain application functionality even in the unlikely
event that its mitigation algorithm fails, as security fixes should not break the
application. However, if desired, the tool could easily be modified to prevent the code
from executing in this scenario. The advice also logs each mitigation using the log4j
logger, so a user can detect when a mitigation attempt fails.

4 SQL Injection & XSS Mitigation Results

This section describes the algorithms that are invoked by the XSS and SQL Injection
mitigation aspects. Both aspects have similar success criteria for application
performance, correct execution of application code, and vulnerability mitigation. When
an AspectShield aspect is invoked at runtime, it will receive the potentially malicious
input and the mitigation type to be applied as parameters.

4.1 The SQL Injection Mitigation Algorithm

There are three primary choices of mitigation technique for SQL injection
vulnerabilities. The first is to use parameterized queries or prepared statements. This
method ensures that the attacker is not able to modify the query that is being executed.
A second approach is to use stored procedures, where the queries are stored in the
database itself and then called by the application when needed. To implement either of
these approaches in legacy code, significant work is required. The approach taken in
this implementation is to escape all user supplied input before executing any query.

SQL Injection mitigation will be accomplished by the SQL Injection mitigation
algorithm when it is invoked by the SQL Injection aspect. The library used to encode
all input is the ESAPI encoder library that can do encoding for Oracle or MySQL
dialects. The steps of the SQL Injection mitigation algorithm are:

1. The SQL Injection aspect generated in the previous section will call its
doSQLInjectionFix() method, passing it the query that needs to be
validated and the encoding type specified when the user ran AspectShield to
generate the aspects.

2. The validator will then test the query for any comments and remove them if
found. The query will be passed to the JSQL Parser library that will parse the
query and return a list of expressions that the query contains.

3. Each expression in the query will be encoded using either the MySQL or
Oracle encoder depending on the choice made by the user when AspectShield
was run.

4. Each expression will be tested to determine if it is a tautology, as SQL
Injection exploits frequently use tautologies while normal SQL queries do not.
This is done by using the Java ScriptEngineManager’s Javascript engine to
evaluate the expression’s value. If the result is always true, the expression is
marked as a tautology and removed from the original query.

5. Once all expressions are encoded and tautologies removed, the query is
reconstructed using the safe values and returned to the SQL Injection
mitigation aspect.

6. When the aspect receives the newly safe version of the query, it will invoke
it’s proceed() method and pass it the new, safe value.

The mitigation algorithm was timed at each step and performance was evaluated for
three case study projects. In the event that the algorithm fails due to an inability to
parse the query or for any other reason, it will catch any exceptions, log the failure
using a logj4 logger, and return the original query passed in. The original query passed
into the algorithm is returned so that if the algorithm fails, the application’s normal
execution flow will not be affected.

4.2 The XSS Mitigation Algorithm

The difficulty in preventing XSS comes from the fact that such a large number of
attack vectors exists. An attacker could potentially steal the session of a victim,
manipulate files on the victim’s computer, record all keystrokes the victim makes in a
web application, or probe a company’s intranet where the victim is located [52].
Appropriate validation and encoding can address most reflected and stored XSS
vulnerabilities. The algorithms described in this section use the ESAPI encoder and
validator libraries to perform escaping and encoding of dangerous data.

The XSS mitigation aspect contains pointcuts that intercept functions, such as
getparameter() from the request object and println() that were identified by
the Fortify SCA. At each join point, the aspect’s advice logic will implement either
encoding or whitelisting on the value intercepted by each pointcut. The process is
outlined in the steps below:

1. The advice will call a doXSSFix() method for each join point. The method
will be passed the intercepted parameter, as well as the type of fix to
implement as chosen by the user during the aspect generation phase.

2. Depending on the type of fix the user selected for the join point, the XSS
Validator will apply either encoding for the chosen format or validation using
a whitelist. The user has the option to choose from several types of encoding
or whitelist provided by the ESAPI library [53] [54].

3. If the desired mitigation is a whitelist, the algorithm will check the input
against a particular regular expression. If the input fails to match, the code
will remove any characters that do not match the desired character set.

4. If the desired mitigation is a particular type of encoding (CSS, JavaScript,
HTML, etc…), the ESAPI library will be used to encode the input.

5. The last step is for the XSS Validator to return the resulting string back to the
aspect’s advice. The advice will then call the proceed() method and pass it
the encoded string.

The most difficult aspect of implementing the XSS validator algorithm was to catch
all possible exceptions that the ESAPI encoder and validator classes can throw. In the
event that an exception occurs, AspectShield handles it gracefully to ensure that no
functionality of the web application is broken. The algorithm also supports different
types of input such as String and byte arrays in order to support all possible join points
identified by the SCA.

5 Validation and Results

This section describes the evaluation of the work. The evaluation will show that
AspectShield successfully mitigates both SQL Injection and XSS vulnerabilities
without altering source code or breaking application functionality. The evaluation will
also show that the libraries and algorithms used to eliminate two of the most important
web application vulnerabilities are not only functional but also do not impact
application performance by more than an average of 1.99ms per request. Both of the
aspects generated by this program will be evaluated in a live environment because they
will be built into and executed as part of each of the three case study applications
chosen.

5.1 Identifying the Case Study Applications

Since we used AspectJ for AspectShield, our case studies are web applications written
in Java. Our other selection criteria for applications included availability of source
code, application size of at least 300 classes, support of MySQL or Oracle databases,
and developer activity. Websites such as FreshMeat.net, SourceForge.net, and
GitHub.com were searched to find suitable candidates.

The first project selected was a popular open source enterprise content management
framework called Alfresco. This program has over 140,000 community members, over
2000 enterprise customers, and over 3,000,000 downloads [43]. This application was
chosen because as a content management application, it has many points of entry that
could potentially be exploited by hackers.

The second project chosen was Apache’s OfBiz. This application is one of the
Apache Software Foundation’s projects and is one of the best open source ERP and E-
Commerce implementations. OfBiz was chosen because of its use in E-Commerce,
where these types of applications are heavily targeted because they contain personal
information such as addresses and credit card information.

The last project chosen was a less well known application called JadaSite, which is
another open source E-Commerce framework. This project was chosen because it

makes heavy use of newer web technologies such as AJAX and WYSIWYG user
interfaces.

5.2 Methods for Validating AspectShield

We perform three types of validation for AspectShield. First, we evaluate the
algorithms and libraries invoked by aspects at each join point. Second, each of the
aspects will be evaluated as part of the Alfresco, OfBiz, and JadaSite applications. The
first method for evaluation is to determine the functionality of the utility class the
aspects call at each join point, the XSS Validator library, and the SQL Injection
Validator library. Third, we create unit tests for each of the libraries’ methods with
JUnit4, and then running a stress test to measure the performance of the libraries.

5.3 SQL Mitigation Algorithm JUnit Results

For the initial set of tests, a list of twenty-one SQL queries was executed fifty times for
both the ESAPI MySQL and Oracle encoders. None of the queries exceeded 300
characters. The list contained different types of malicious content that could result in
exploits ranging from injection of scripts to bypassing login forms. After the JUnit4
test was executed, the log file that contained the results of each query test was
analyzed. The result showed several promising indicators that the desired results were
achieved in both successfully mitigating SQL Injection and doing so in less than 5ms
on average. The results of the log file provided information such as removal of
comments from the query and tautology detection and removal. One such example is
on the SQL query “SELECT * FROM Users WHERE ((Username='1' or '1' = '1'))/*')
AND (Password=MD5('password')))”. This query contains a comment that would
bypass the password checking for login validation as well as a tautology, ‘1’ = ‘1’, that
would also bypass login checks. This query was successfully mitigated by removing
the comment entirely and replacing the tautology with an expression that would
evaluate to false.

The second characteristic of SQL Injection Validator execution that was analyzed
was the execution time for each of the query validations (Figure 3). Data was collected
from the log file, then the maximum, minimum, average, median, and mode were all
calculated. The longest execution time was 33ms, and the shortest was 1ms. The
average query validation time was only 5.79ms, and the most common time, the mode,
was 5ms. The fact that the longest execution period was only 33ms was very
encouraging considering that it was much shorter than the average request.

Fig. 3. SQL Mitigation Algorithm execution time

5.4 XSS Mitigation Algorithm JUnit Results

The evaluation results for testing the XSS Validator contained a considerably larger
amount of information because of the many different mitigations that are available to
the user. However, the 13 different categories can be split into two separate categories
that had similar results. The “encoding” category consists of mitigations that use the
ESAPI encoder library, which simply encodes the input characters according the
context in which they would be used. The second and generally more involved
category is “whitelist”, where user input is compared to a regular expression string.
The results for both can be found in the table below:

Validation Type Average (ms) Max (ms) Min (ms) Median (ms)

HTML Attribute Encode 0.04 13 0 0
Email Whitelist 3.1 197 0 1
Alpha Numeric Whitelist 3.3 199 0 1
URL Encoding 0.09 6 0 0
SSN Whitelist 3.06 199 0 1
Zip Code Whitelist 3.22 196 0 1
Credit Card Validation 4.53 229 0 1
HTML Encoding 0.05 11 0 0
CSS Encoding 0.03 1 0 0
Alpha Whitelist 3.3 209 0 1
Javascript Encoding 0.08 47 0 0
IP Address Whitelist 3.08 198 0 1

 As shown above, the items in the “encoding” category had significantly lower

average and maximum execution times. The lowest of these was for CSS encoding,
which only took a third of a millisecond, and the highest was 47ms for the JavaScript

	
 E
xe
cu
'
on

	
 T
im

e	

(m

s)
	

Encoding	
 Type	

SQL	
 Validator	
 Execu'on	
 Time	

1st	
 Quar)le	

Min	

Median	

Max	

3rd	
 Quar)le	

encoding of a string. The longest execution time belonged to credit card validation,
which took almost a quarter of a second at 229ms. The reason that this function takes
so long to execute is because the ESAPI validator evaluates the string to see if it
matches several different credit card patterns and computes the Luhn checksum, which
is used to validate credit card numbers.

5.4 Results of Integration With Case Study Applications

The final part of the evaluation process was to test the aspects with three case study
applications running in a live environment. The difficulty of this validation step comes
from the fact that the vulnerabilities identified by the SCA are scattered throughout the
application and the path to each of these can be difficult to reach since all the projects
are enterprise scale applications. Therefore, the chosen approach is to only evaluate the
execution of join points that are easily reachable by a typical user of the application.
When doing this step, the aspect generation program must either be extracted into a
JAR or included in the build path of each of the applications so that the XSS and SQL
Injection Validators as well as required libraries such as the JSQL Parser can be
referenced.

 For the OfBiz project, 22 join points were evaluated and the execution time and
result were analyzed. Each join point was able to execute successfully and with similar
time to the JUnit4 execution data explained above. Out of the 22 join points evaluated,
16 were possible XSS vulnerabilities with whitelist validation and 6 applied SQL
encoding. Since the Alfresco project consists of multiple projects with different
contexts, the “repository” project was chosen for execution since it contained a fairly
large portion of the vulnerabilities identified. This project contained 11 SQL Injection
and 4 XSS vulnerabilities. Both of the aspects executed as expected, except one in the
SQL Injection category, where a table creation statement was not supported by the
JSQL Parser. However, even though the query was not supported, the program still
executed normally, because the SQL Injection Validator returns the original value if
query validation fails. The JadaSite project had no issue executing any of the 8 XSS
and 14 SQL Injection join points that were tested.

5.5 Evaluation – OWASP Webgoat Project

To provide an extra layer of validation using an application with which most
professionals in the web application security field are familiar, AspectShield was
applied to the OWASP WebGoat version 5.2 project. WebGoat is a deliberately
insecure Java web application that is designed to teach web application security. It
contains a number of purposefully implemented vulnerabilities, including several SQL
Injection and XSS vulnerabilities.

Fortify SCA was used to locate these vulnerabilities. Using the Aspect Generator,
aspects were created to implement mitigations at runtime by intercepting potentially
malicious user input. The application was compiled and deployed with the generated
aspects, and then each of the XSS and SQL Injection modules were tested.

The two modules tested manually were Injection flaws and XSS. For SQL Injection,
several types of queries such as insert, update, and delete were executed as well as
inputs with multiples queries and tautologies. All of the queries attempted to execute
would normally exploit the application but were successfully mitigated with
AspectShield. For XSS vulnerabilities, the fixes specified to the XSS aspect during the
generation of the aspects were to do Javascript encoding on various inputs. The aspect
successfully mitigated reflected, stored, and DOM based XSS attacks that would
normally succeed in the modules associated with that type of vulnerability.

5.6 Evaluation Conclusion

Evaluation showed that AspectShield successfully prevented the exploitation of XSS
and SQL INJECTION vulnerabilities in three case study Java web applications, as well
as in the OWASP WebGoat application. JUnit testing of both the SQL INJECTION
and XSS mitigation algorithms proved that the implementation would not significantly
affect application performance or interrupt execution flow. The implementation of the
vulnerability mitigation aspects across three enterprise level web applications showed
that the implementation can easily be applied to existing code and successfully mitigate
attacks.

6 Related Works

6.1 AOP and Security

Security with AOP has been the subject of study in several different publications [6],
[7], [8]. Some of the papers that influenced this work include the work done by Robin
C. Laney and Janet van der Linden [7], where the authors were able to leverage the
power of AOP in order to make significant changes to legacy applications. This was
particularly interesting, because often programmers are assigned the task to implement
some improvement to a piece of software that has not been modified for several years
and has little documentation. The authors showed that programmers can use AOP to
evolve legacy code and leave behind digital signatures that reduce the likelihood of
breaking existing functionality while enhancing the application overall. In the work
done by Minhuan Huang, Lufeng Zhang, and Chunlei Wang [8], they created a fully
functional library that implements security features across an application using AOP.
Although their library mostly focused on encryption and decryption, it showed how
security could be implemented using AOP.

Seinturier and Hermosillo wrote a paper which relates closely to this work [9]. Their
tool, AProSec, detects inputs to a web application using aspects to intercept potential
XSS and SQL Injection attacks. Their aspects then either warn the user or reject the
potentially harmful data input. Their approach was unique in that they wrote aspects
that implement security detection functionality in a web application server’s native
libraries without having to modify the web application server code or write their own.
Some of their concepts such as intercepting request and response parameters were

leveraged in the creation of aspects in this research. Another framework created by Zhi
Jian Zhu and Mohammad Zulkernine uses AOP for intrusion detection for some of the
most common attacks in the Web Application Security Consortium [23]. The
AspectShield tool takes this approach in a different direction by intercepting vulnerable
code detected by the SCA and than fixing harmful inputs during run time.

While we were making final revisions of this paper for publication, we discovered a
paper describing the implementation of a system similar to AspectShield that had been
published after we completed the version of this paper that we submitted for
publication. This paper describes the creation of an Eclipse IDE plug-in that does
automatic discovery of weaknesses in the application code and with the assistance of
the developer, remediates them with AOP [24]. The plug in also makes use of the
ESAPI libraries created by OWASP and generates aspects based off of user selected
validation and encoding techniques.

6.2 Security with AOP for SQL Injection

When looking at the most prevalent web application security vulnerabilities, injection
is typically at the top of the list at every reliable source. SQL Injection tends to be the
most harmful of these and it is ranked as the second most common form of attack on
web applications [10]. One of the most extensive works of research done by V.
Shanmughaneethi, Yagna Pravin, and Emilin Shyni uses aspects to analyze a SQL
query for potentially malicious content [10]. This tool uses aspects which call web
services to analyze queries and create errors in order to prevent malicious SQL from
being executed. This is a good approach in theory, but the authors do not specifically
discuss the implications of making web service calls with respect to performance and
reliability of these web services.

In his book [11], Justin Clarke briefly discusses how AOP can be leveraged to hot-
patch applications that are vulnerable to SQL Injection at runtime. He recommends
using one of the AOP implementations such as AspectJ and Spring AOP to implement
checks for insecure dynamic SQL libraries. Most of the references, such as Clarke’s
book, offer a few sentences on how the paradigm could be used but do not reference
any concrete implementations. Even solutions that do provide concrete
implementations, such as the Shanmughaneethi paper, only work as far as identifying
vulnerabilities but don’t do much to mitigate them.

6.3 Security with AOP for XSS

AOP can be used to mitigate and in some cases eliminate XSS vulnerabilities in web
applications. This is especially true when the application in question would require a
complete re-write in order to achieve security [23]. According to OWASP, the best two
ways to prevent XSS is to escape all untrusted data based on the content of the web
page and to do whitelist validation on user inputs [21]. Using AOP, a developer can
create aspects to intercept incoming and outgoing data that would be displayed to the
user and apply either escaping or whitelisting without modifying the existing source
code. Mece and Kodra [24] were able to create a XSS validation aspect that does

whitelisting of user inputs. Their “validator” aspect treated all strings that were not
alphanumeric as potentially dangerous and denied them. While this is certainly a very
safe approach, applying such restrictions onto an existing application would almost
certainly break functionality because many applications require inputs much more
complicated than just an alphanumeric string.

There have been multiple studies with the intent to use AOP to eliminate XSS
vulnerabilities [28] [29] [30]. However, most of these simply discuss the idea of using
aspects in order to achieve security and very few have working implementations. Of
the papers with implementations, the implementations are simple ones such as regular
expression whitelisting of input that just demonstrate the potential usefulness of the
AOP paradigm without offering in-depth solutions.

7 Future Works

There are a number of features and improvements that can be added to AspectShield to
make it a more effective security tool and provide a better overall user experience. The
first is to extend the program to support mitigation of additional types of
vulnerabilities. We intend to examine the possibility of adding additional mitigations
for the remaining vulnerabilities of the OWASP Top 10. Along with support for
mitigation of a wider range of threats, it would also be helpful to create a graphical user
interface for the aspect generator program in order to improve user experience.

 A second potential area of improvement is to extend AspectShield to other
programming languages. One challenge will be finding a suitable AOP implementation
for each additional programming language to be supported. Since the implementation
for each language would be different, new template files, function definitions, and
libraries for mitigating vulnerabilities would need to be created for each programming
language.

 A third area for future work would be to extend the program to support multiple
static analysis tools. Different automated static analysis tools find different
vulnerabilities in source code. Additional plans for future work include an Eclipse
plug-in that does the mitigation aspect generation automatically, and a multi language
API for creating all parts of the security aspect generation process.

8 Conclusions

Two of the most common vulnerabilities in web applications are SQL Injection and
Cross-Site Scripting. Thousands of web applications process personally identifiable
information such as SSNs, credit card numbers, and addresses every day, and many of
these applications have a significant number of SQL INJECTION and XSS
vulnerabilities that can be exploited by a malicious user. The AspectShield tool
described in this paper creates aspects that prevent malicious content from being
executed or stored in Java web applications using the results of the Fortify Source
Code Analyzer and the users’ choice of mitigation technique. The most significant

feature of the approach identified is creation of the AspectShield tool, which does
mitigation of vulnerabilities without the need to modify potentially fragile source code.

Our approach was to apply the AOP paradigm to execute validator classes at the
locations of the vulnerabilities identified by Fortify SCA. This modular approach to
implementing security allows the developers to use separation of concerns where they
can apply any future security algorithms to a single location. When the user executes
AspectShield, they will be given a choice of fixes to implement for each of the
vulnerabilities detected by the static analysis tool. The two resulting aspects, one for
XSS and the other for SQL Injection, contain pointcuts and advices that will isolate
join points throughout the applications’ source code and weave in the necessary code
that will ensure the mitigation of these vulnerabilities.

In order to evaluate the success of the aspects created, WebGoat and three enterprise
level open source Java web applications were chosen as case studies. These
applications are from the E-Commerce, content management, ERP, and document
management categories. AspectShield generated vulnerability mitigation aspects based
on static analysis of these applications. Evaluation consisted of unit tests using the
JUnit testing framework, integration of aspects into each project, and testing the
mitigation aspects as part of the running applications. The evaluation proved that each
of the aspects not only mitigate XSS and SQL INJECTION attacks but also do it very
efficiently with most execution times being less than 10 milliseconds. The low
execution time of the aspects’ at each join point is significant because it is very
important that the introduction of the security code did not heavily affect the execution
time of the original applications.

In conclusion, this paper describes the implementation of a program that generates
XSS and SQL INJECTION mitigation aspects that can be applied to mitigate
vulnerabilities in both new and legacy web applications using information from static
source code analysis. The main advantage of this approach compared to others
evaluated that it does not require any modification to legacy code and provides a
centralized location for the application’s security logic. The evaluation of generated
aspects with three enterprise level projects provides a great level of confidence that the
approach is both valid and effective at mitigating some of the most prevalent threats to
web application security.

References

1. Webroot. State of Internet Security – Protecting Enterprise Systems [Whitepaper] USA: Webroot
Software Inc., 2007.

2. Electronista. “LulzSec hacks Sony Pictures, reveals 1m passwords unguarded.” Electronista Media
Inc., 2 Jun. 2011.

3. “Measuring Website Security: Windows of Exposure.” WhiteHat Website Security Statistic Report.,14
Mar. 2011.

4. V. Shanmughaneethi, Ra. Yagna Pravin, C. Emilin Shyni, S. Swamynathan: SQLIVD - AOP:
Preventing SQL Injection.

5. OWASP (Open Source Web Application Security Project) . OWASP Top 10 – 2010 Edition. OWASP
Foundation, 2010.

6. “Fortify Source Code Analyzer – Capabilities.” HP Fortify. Web. 2011.
7. Laddad, Ramnivas. “AOP @ Work: AOP Myths & Realities.” IBM Developer Works, 14 Feb. 2006.

8. ESAPI Interface Encoder. The Open Web Application Security Project. Web. 2011.
9. ESAPI Validator Library. The Open Web Application Security Project. Web. 2011.
10. Li, Sing. AOP: Patching in the 21st Century. Developer Fusion. Web. 23 Jul. 2010.
11. Bostrom, G. Database Encryption as an Aspect. Proceedings of AOSD 2004 Workshop on AOSD

Technology for Application level Security., Mar. 2004.
12. Laney, R., van der Linden, J., Thomas, P. Evolution of Aspects for Legacy System Security Concerns.

Proceedings of AOSD 2004 Workshop on AOSD Technology for Application level Security., Mar.
2004

13. Huang, M., Wang, C., Zhang, L. Toward a Reusable and Generic Security Aspect Library. Proceedings
of AOSD 2004 Workshop on AOSD Technology for Application level Security., Mar. 2004.

14. Hermosillo, G., Gomez, R., Seinturier, L., Duchien, L. Using Aspect Programming to Secure Web
Applications. Journal of Software, Vol. 2, No. 6., Dec 2007.

15. Clarke, Justin. SQL Injection Attacks and Defense. 1st ed. Syngress, 13 May 2009. 1 Mar. 2011.
16. Mece, Elinda. Kodra, Lorena. Towards full protection of Web Applications based on Aspect Oriented

Programming, pp. 33-37, GJCST 2012.
17. Arthur, Charles. “Twitter users including Sarah Brown hit by malicious hacker attack.” Guardian

News. 21 Sep. 2010.
18. Win, Bart ., Viren Shah, Wouter Joosen, and Ron Bodkin, editors. AOSDSEC: AOSD Technology for

Application-Level Security, March 2004.
19. Bodkin, Ron. "Enterprise Security Aspects." AOSDSEC: AOSD Technology for Application-Level

Security. Ed. Bart . Win, Viren Shah, Wouter Joosen, and Ron Bodkin, March 2004.
20. Fortify. Leading Bank Turns Security into a Differentiator with Fortify SCA. Fortify Software Inc.

2008.
21. Feathers, Michael, Working Effectively with Legacy Code, Prentice Hall, 2004.
22. Higgins, Kelly J. “The Cost of Fixing an Application Vulnerability”. Security Dark Reading. 11 May

2009. < http://www.darkreading.com/security/news/ >
23. Zhi Jian Zhu , Mohammad Zulkernine, A model-based aspect-oriented framework for building

intrusion-aware software systems, Information and Software Technology, v.51 n.5, p.865-875, May,
2009

24. Gabriel Serme, Anderson Santana De Oliveira, Marco Guarnieri, Paul El Khoury. Towards Assisted
Remediation of Security Vulnerabilities. 6th International Conference on Emerging Security
Information, Systems and Technologies, August 2012.

