
Security of Open Source Web Applications

James Walden, Maureen Doyle, Grant A. Welch, Michael Whelan
Department of Computer Science

Northern Kentucky University
Highland Heights, KY 41099

waldenj@nku.edu, doylem3@nku.edu, welchg1@nku.edu, whelanm1@nku.edu

Abstract

In an empirical study of fourteen widely used open
source PHP web applications, we found that the vulnerabil-
ity density of the aggregate code base decreased from 8.88
vulnerabilities/KLOC to 3.30 from Summer 2006 to Sum-
mer 2008. Individual web applications varied widely, with
vulnerability densities ranging from 0 to 121.4 at the begin-
ning of the study. While the total number of security prob-
lems decreased, vulnerability density increased in eight of
the fourteen applications over the analysis period.

We developed a security resources indicator metric,
which we found to be strongly correlated (ρ = 0.67, p <
0.05) with change in vulnerability density over time. Tra-
ditional software metrics, such as code size, cyclomatic
complexity, nesting complexity, and churn, had significant
(p < 0.05) but much smaller correlations (ρ = 0.31 at best)
with vulnerability density. Vulnerability density was mea-
sured using the Fortify Source Code Analyzer static analysis
tool.

1. Introduction

As people bank, communicate, and shop online, they be-
come dependent on the security of the software used for
these purposes. Identity theft, malware infections, and other
forms of computer crime cost consumers and companies
billions of dollars [8] and erode the trust that is necessary
for people to be willing to do business online.

Web applications have become the primary source of se-
curity vulnerabilities. From 2006 through the first half of
2008, web application vulnerabilities represented 51% of all
vulnerability disclosures reported in IBM’s X-Force Trend
Statistics Report [12]. MITRE found that the most common
two vulnerability types since 2005 were cross-site scripting
and SQL injection [4], which are primarily found in web ap-
plications. In 2007, the CSI Computer Crime and Security

Survey reported that 44% of corporations had experienced
a security incident involving their web site [21].

In this paper, we survey security trends in open source
web applications. We studied fourteen web applications
written in PHP, including some of the most widely used
ones, such as WordPress and Mediawiki, the software on
which Wikipedia runs. We mined the source code repos-
itories of these applications to measure vulnerability den-
sity and to collect a variety of software metrics, including
our security resources indicator metric as well as traditional
metrics such as code size, churn, and complexity. We be-
lieve this is the largest survey of web application security,
both in terms of code size and number of application users.

The primary contributions of this work are:

1. It reports the current state of web application secu-
rity vulnerabilities in open source PHP applications
and how vulnerabilities changed from Summer 2006
to Summer 2008.

2. It develops a security resources metric and shows that
that metric can be used to predict changes in vulnera-
bility density over time.

3. It analyzes whether code size and code complexity
metrics can be used to predict vulnerability densities
in web applications at the project level.

4. It analyzes whether code changes, measured by churn
and lines deleted, can be used to predict vulnerability
densities in web applications.

We measured security problems in open source web ap-
plications by counting the number of vulnerabilities found
in source code by a static analysis tool. Static analysis
tools find common secure programming errors by evaluat-
ing source code without executing it. We used version 5.1
of the Fortify Source Code Analyzer static analysis tool. We
discuss alternative techniques for measuring vulnerabilities
and why we chose static analysis below.

We used the static analysis vulnerability density (SAVD)
metric, which is the number of vulnerabilities detected by
a static analysis tool per KLOC (thousand lines of code).
The tool categorized vulnerabilities into thirteen categories,
such as cross-site scripting and SQL injection, which were
analyzed separately.

Our results show that overall vulnerability density is im-
proving over time, from 8.88 in the initial set of revisions
to 3.30 in the final set, though individual projects vary con-
siderably, with eight of the fourteen projects raising their
vulnerability densities over time. The reductions largely re-
sult from decreases in the number of the three most common
vulnerability types: SQL injection, cross-site scripting, and
path manipulation. However, the incidence of the next two
most common vulnerability types–dangerous file inclusion
and dangerous function use–increased over time.

We suspected that projects that advertise that they are
working on security through public online resources tend to
improve security over time. To measure these resources, we
developed a security resources indicator metric, which we
found to be strongly correlated (ρ = 0.67, p < 0.05) with
change in vulnerability density over time.

Three software metrics showed significant but small cor-
relations with vulnerability density for the aggregate code
base of the fourteen projects. These metrics were maximum
cyclomatic complexity, average cyclomatic complexity, and
average nesting complexity. However, no single software
metric was a predictor for every individual project.

After discussing related work in section 2, we describe
the design of this study in section 3. Vulnerability density
results are analyzed in section 4, while section 5 describes
software metric results. Section 6 analyzes vulnerabilities
by type, while section 7 describes the security resource in-
dicator metric. Limitations of our analysis are discussed in
section 8. Section 9 finishes the paper, giving conclusions
and describing future work.

2. Related Work

Software security researchers have measured vulnerabil-
ities using both databases of reported vulnerabilities such as
the National Vulnerability Database (NVD) and static anal-
ysis results. Some of these researchers have studied soft-
ware metrics to determine if these metrics can predict vul-
nerability density. There has also been research using static
analysis results and software metrics to predict defect den-
sity, rather than vulnerability density. None of these studies
analyzed web applications or code written in PHP.

Coverity reported on their analysis of a large number of
open source projects written in C and C++ [6], finding a
strong, linear relationship between code size and number of
vulnerabilities discovered via static analysis. Fortify ana-
lyzed a small number of Java projects [10] with their static

analysis tool and also evaluated the access to security ex-
pertise that each project provided, observing whether each
project provided a security contact email, a security URL,
and easy access to security experts.

Ozment and Schechter analyzed the OpenBSD oper-
ating system to measure vulnerability lifetimes and the
change of vulnerability density with each release [20]. They
found that the rate of vulnerability reports in foundational
OpenBSD code was slowly decreasing, with a median life-
time of 2.6 years.

McCabe’s cyclomatic complexity (CC) is a popular met-
ric for estimating the number of defects. Shin [23] found a
weak correlation of CC with vulnerabilities for the Mozilla
Javascript Engine. Nagappan et. al. [18] had mixed results,
with three projects out of five showing strong correlations
between defect density and CC. They also used static anal-
ysis tools to measure defect density [17]. Note that defect
density may not correlate with vulnerability density, as se-
curity flaws differ from reliability flaws.

Shin [23] analyzed an additional complexity metric:
nesting complexity, which measures the depth of the nest-
ing of loops or conditionals. This study showed that mul-
tiple releases of the Mozilla Javascript Engine had weakly
significant correlations between vulnerabilities and nesting
complexity.

Nagappan and Ball [16] predicted system defect density
based on the size of code changes. They examined two
releases of Windows Server 2003. Their hypothesis was
that projects whose code changed often pre-release would
have more post-release errors than projects with fewer pre-
release changes. They measured code changes using rela-
tive churn, defining relative churn as absolute churn divided
by the number of lines of code. Their definition of abso-
lute churn was the sum of lines of code that were added and
changed. They found that relative code churn was a better
measure of system defect density than absolute code churn.

It is unknown whether the results of the papers described
above can be generalized to web applications, as web appli-
cations handle input and output in a different manner than
the traditional desktop or server applications that were ana-
lyzed in these studies.

3. Study Design

We examined the project history of fourteen open source
web applications selected from the most popular PHP web
applications on freshmeat.net. The applications are
listed in table 1. We used a single language for our study
so that metrics could be compared objectively, as programs
written to perform the same task in different languages will
differ in both lines of code and in code complexity due to
differing styles and control structures. We chose PHP since

it is the language in which the most widely used open source
web applications are written.

achievo obm roundcube
dotproject phpbb smarty
gallery2 phpmyadmin squirrelmail
mantisbt phpwebsite wordpress
mediawiki po

Table 1. PHP Open Source Web Applications

To be selected, an application had to have a Subver-
sion repository containing at least 100 weeks of revisions.
The fourteen applications studied were the only applica-
tions listed on freshmeat.net that matched our criteria.
While one project was small, with under 6000 lines of code,
and another one was particularly large, with nearly 400,000
lines of code, the size of the remaining projects ranged from
25,000 to 150,000 lines.

We selected a single revision from each week to ana-
lyze, choosing the first change to be made during that week.
The reasons for this choice were pragmatic. We wanted to
observe the projects using identical time intervals, which
neither individual revisions nor official releases would have
permitted. Additionally, a single revision typically involves
the alteration of only two to three lines of code, rarely in-
troducing or removing a vulnerability, though a rare few re-
visions modified thousands of lines of code. Public releases
were too few and irregular in schedule to use for our analy-
sis. It is also important to note that since these projects have
public source repositories, users who need fixes immedi-
ately or who want features quickly frequently download and
use source code from the repository without waiting for an
official release.

We analyzed the number of vulnerabilities in each ap-
plication by counting the number of vulnerabilities found
in an application. While user input could reach a single
SQL injection vulnerability through multiple code paths,
the vulnerability is only counted once. There are multiple
approaches to identify vulnerabilities to count, including re-
ported vulnerabilities from a database such as the National
Vulnerability Database (NVD) [19], static analysis tool re-
sults, and dynamic analysis tool results.

Reported vulnerabilities from any single source are an
undercount of the actual number of vulnerabilities. There
are several causes for the undercount: latent vulnerabilities
that have not been discovered or reported, reported vulnera-
bilities that are not cross-listed with the NVD, and multiple
vulnerabilities that are reported as a single database entry.
The Common Vulnerabilities and Exposures (CVE) guide-
lines, which are the source of most NVD vulnerabilities, re-
quire merging vulnerabilities of the same type in the same
version into a single entry [7]. Several latent vulnerabili-

ties appeared in the NVD for our web applications after the
completion of our study. A more complete discussion of the
issues in interpreting reported vulnerability statistics can be
found in [3].

Dynamic analysis requires installation of the software,
and results depend on the configuration and environment in
which the application is deployed. Static analysis has the
advantage that it can be used as soon as code is available
without requiring software installation. However, static and
dynamic analysis tools may find different vulnerabilities,
and both static and dynamic analysis results may include
false positives, which are unlikely to occur in public vulner-
ability databases.

We chose static analysis as the technique to measure vul-
nerabilities, since it enabled us to measure vulnerabilities
without installing 100 versions of each project and the un-
dercount problem is not as severe with static analysis tools
as it with reported vulnerabilities. We found an order of
magnitude more vulnerabilities with our static analysis tool
than are reported for the set of applications. While some
of these vulnerabilities are false positives, as discussed in
section 8, the false positive rate is not high enough to re-
duce the number of vulnerabilities found to the number of
reported vulnerabilities. We measured vulnerability density
using the static analysis vulnerability density (SAVD) met-
ric.

Coverity [6] and Fortify [10] measured SAVD in their
reports. Researchers at Microsoft found static analysis de-
fect density to be an accurate predictor of pre-release defect
density [17]. We used the Fortify Source Code Analyzer
version 5.1 to compute SAVD. Lines of code were mea-
sured using the source lines of code (SLOC) metric, which
excludes blank lines and comments. The SLOCCount [24]
tool was used to measure SLOC.

While commercial static analysis tools have become
more widely used in recent years, these tools are rarely used
in open source development due to their high cost. Open
source static analysis tools are free, but we found only three
open source tools for PHP: Pixy [13], PHP-Front, and PHP-
SAT. None of these tools can serve as a replacement for
a commercial static analysis tool. Neither PHP-Front nor
PHP-SAT has produced a stable release yet, and Pixy is lim-
ited to PHP 4 code and can only detect two types of vulner-
abilities.

In addition to static analysis vulnerability density, we
collected and analyzed the following software metrics:
SLOC, McCabe’s cyclomatic complexity [14], nesting
complexity, churn, and number of lines deleted between
revisions. Churn is a measure of the size of changes be-
tween versions, being the sum of the number of lines of
code added and changed. Nesting complexity counts the
depth of nested conditionals and loops. Cyclomatic Com-
plexity and Nesting Complexity were computed using PHP

CodeSniffer [5]. Churn and number of deleted lines were
computed from Subversion diffs by a custom Ruby script.

4. Results

Security problems identified by static analysis in the se-
lected open source web applications decreased from Sum-
mer 2006 to Summer 2008. Examining the aggregate code
base of all fourteen web applications, we found 7750 vul-
nerabilities in the initial set of revisions and 4628 vulnera-
bilities in the final set of revisions. At the same time, code
size grew from 872,319 lines to 1,404,178 lines. The com-
bined reduction in vulnerabilities and growth in code size
produced a change in static analysis vulnerability density
from 8.88 in initial revisions to 3.30 for the final set of revi-
sions.

These average vulnerability densities are much higher
than the initial and final values for average density reported
for C and C++ applications by Coverity [6], which were
0.30 and 0.25 respectively. However, they are smaller than
the average vulnerability density of 17.72 reported for a
sample of Java applications by Fortify [10]. The use of
different languages and classes of applications is likely the
cause of some of the difference between these results and
ours. The Coverity study used a different static analysis
tool, which is another source of difference.

Vulnerability density varied widely between projects,
with initial revisions ranging from 0 to 121.4 vulnera-
bilities/KLOC. In the final set of revisions, variation in
SAVD was smaller, ranging from 0.20 to 60.86 vulnerabil-
ities/KLOC. Vulnerability density decreased in six projects
and increased in the other eight projects over the period
studied. The Photo Organizer (po) project had the highest
SAVD but the largest improvement, with SAVD decreas-
ing from 121.4 to 60.86. All of the projects except for two
increased in size. Figure 1 shows the change in vulnera-
bility density between the initial and final revision for each
project.

Static analysis vulnerability density of projects did not
correlate with the number of vulnerabilities reported in the
National Vulnerability Database. The reasons for vulner-
ability reports undercounting the number of vulnerabilities
were discussed above. However, the number of NVD vul-
nerabilities for a project was correlated with the project pop-
ularity on freshmeat.net [11] with a Spearman’s rank
correlation coefficient of 0.53 at a 95% level of confidence.
This correlation may result from attackers devoting more ef-
fort to constructing exploits for widely deployed systems or
vulnerability researchers preferring to analyze higher pro-
file software.

The reasons for large changes in code size or vulnera-
bility count were sometimes discernable from Subversion
log entries or diffs between revisions. For example, two

Figure 1. Change in Vulnerability Density

Figure 2. Squirrelmail SLOC and SAVD vs.
Time

projects merged libraries into their code bases, increasing
code size dramatically with a single revision. One of those
two projects, Achievo, merged the ATK project into the
repository in January 2008, increasing both code size and
vulnerability density.

Squirrelmail is a project where we can briefly explain
each change in the number of vulnerabilities, since the
revisions are well commented and there are few security
changes. Application code size and vulnerability count over
time are shown in figure 2. The application dramatically
decreased the number of vulnerabilities in a single revi-
sion early in the study. Examination of Subversion com-
ments revealed that the entire process for handling input
was changed, including the addition of new data sanitiza-
tion code in a single large revision. A later revision fixed

vulnerabilities reported in CVE-2006-3174 according to the
comment. After that fix, the vulnerability count remained
constant despite many modifications and continual growth
in application size.

5. Software Metric Analysis

Based on prior research [6, 16, 17, 18, 20, 22], we se-
lected software metrics which had demonstrated correla-
tions to vulnerability or defect density. These metrics are
churn, cyclomatic complexity, and nesting complexity. We
also examined revision number and SLOC, but these results
are not presented here. No previous study found a single
complexity measure that predicted either defect or vulnera-
bility density for all applications.

We computed three variations of the CC metric: average
CC, total CC, and max CC. Total CC is the sum of CC for all
PHP functions in a project. Average CC is total CC divided
by the number of functions in a project. Max CC is the
largest CC value for all functions in a project.

Figure 3 displays the correlation coefficients for the
SAVD of all revisions and the metrics selected. The Spear-
man’s rank correlation coefficient (ρ) was used for evaluat-
ing correlations between vulnerability density and metrics
because no assumptions can be made about the underlying
distributions. For simplicity, the Cohen Scale [2] scale is
used to define strongly correlated as |ρ| ≥ 0.5, medium
correlation as 0.3 ≤ |ρ| < 0.5, and weakly correlated
|ρ| ≤ 0.3.

Figure 3. Metric correlations with SAVD

There are two metrics with significant negative correla-
tions: TotalNest and TotalCC. These results indicate that
as the metric value increases, the vulnerability density de-
creases, or that as the value decreases, the vulnerability den-
sity increases. Total complexity metrics, which sum the
complexity metric values for all functions, may not be good
indicators of overall code complexity since a program that

is organized into a number of low complexity functions can
have the same complexity as a program consisting of a sin-
gle high complexity function.

As Shin [22] found for Mozilla, we observed weak cor-
relations with complexity metrics. Though weak, the cor-
relations are statistically signficant, and the most promising
metrics appear to be average CC, maximum CC, and av-
erage nesting complexity. Our results agree with previous
studies except for Nagappan and Ball [16], as we observed
no significant correlation between churn and vulnerability
density. A possible reason for the difference is because
Nagappan examined two official releases while we studied
weekly revisions.

We also computed correlations on a per project basis.
There were some very strong correlations as identified in
table 2. For this analysis, Spearman’s coefficient is signifi-
cant at the 99% confidence level when |ρ| > 0.25. For ease
in reading, all significant positive correlations are in bold
and all significant negative correlations are in italics.

Project Max CC Avg CC Avg Nesting
achievo 0.74 -0.48 0.15
dotproject 0.17 -0.46 0.63
gallery2 -0.74 -0.60 -0.41
mantisbt -0.82 -0.96 -0.91
mediawiki -0.86 -0.60 -0.21
obm -0.65 0.80 0.91
phpbb 0.35 -0.31 -0.37
phpmyadmin 0.77 -0.93 -0.88
phpwebsite -0.77 -0.73 -0.67
po 0.70 0.54 0.58
roundcube 0.83 0.88 0.80
smarty 0.29 0.78 0.57
squirrelmail -0.32 -0.46 -0.63
wordpress -0.16 -0.19 -0.71

Table 2. Project SAVD and metric correlations

This table illustrates the diversity of projects with respect
to the individual metrics and indicates that caution should
be used when using metrics to predict vulnerability densi-
ties. There are a large number of negatively correlated re-
sults for all three metrics indicating they are a poor measure
for the individual project. Maximum or average CC could
be used as a weak indicator of security vulnerabilities.

6. Vulnerability Type Analysis

We examined the vulnerabilities by category. The For-
tify Source Code Analyzer categorized the vulnerabilities
in these applications into thirteen types, which are listed in

table 3. The tool can detect other types of vulnerabilities,
such as buffer overflows, that were not found in any of the
applications studied.

Command Injection Hardcoded Domain in HTML
Cross-Site Request Forgery Javascript Hijacking
Cross-Site Scripting Often Misused
Dangerous File Inclusion Open Redirect
Dangerous Function Path Manipulation
Dynamic Code Evaluation SQL Injection
File Permission Manipulation

Table 3. Security Vulnerabilities Found

In the initial revision of the applications, the five most
common vulnerability types contain 92% of vulnerabilities.
In order, these five types are cross-site scripting, SQL injec-
tion, path manipulation, dangerous function, and dangerous
file inclusion. Figure 4 shows the types. Four of these five
are found in the top five vulnerability types in MITRE’s vul-
nerability type distributions in CVE report [4]. MITRE does
not use the dangerous function category reported by Fortify
and has buffer overflow as their fourth most common vul-
nerability type, which is not a flaw found in PHP applica-
tions though it can occur in the PHP interpreter itself.

Figure 4. Initial Revision Types

The distribution of types of flaws changed between the
initial and final revisions. While the five most common
types remain the same, their ranks have changed and they
only make up 87% of all vulnerabilities. Cross-site script-
ing remains the most common category of flaw, but SQL
injection has dropped dramaticaly from 31% of the initial
flaws to only 13% of the final vulnerabilities. Path manipu-
lation flaws have increased their proportion slightly and are

the second most common vulnerability in the final revision.
Figure 5 displays the vulnerability type distribution in the
final revision.

Figure 5. Final Revision Types

While the overall count of vulnerabilities decreased from
the initial to the final revision, only six of the thirteen cate-
gories decreased in absolute numbers and there were more
vulnerabilities in seven of the categories in the final revi-
sion. The six vulnerability types that decreased included
the three most common types: cross-site scripting, SQL in-
jection, and path manipulation. Figure 6 shows the changes
in vulnerability count for each category.

Figure 6. Vulnerability Type Changes over
Time

6.1 Per-Project Vulnerability Type Anal-
ysis

The distribution of the types of flaws varied between
projects, with no project having all types of flaws. Figure 7
presents the change in SAVD for the fourteen projects di-
vided among the four dominant error types (SQL injection,
path manipulation, dangerous file inclusion, and cross-site
scripting). Two additional categories (all other ¿=0, all other
¡0) combine the vulnerability types with positive and nega-
tive negative changes for the project, respectively.

Figure 7. ∆SAVD vs. Vulnerability Types

Large improvements can be seen in figure 7 for po, squir-
relmail, and WordPress. These improvements were largely
made through the elimination of SQL injection, path ma-
nipulation, and cross-site scripting errors in these projects.
Most other projects show small decreases in SQL injection
vulnerabilities over the two years; only three projects saw a
small increase of less than ten vulnerabilities for this cate-
gory.

The large decrease in cross-site scripting vulnerabilities
is due to improvements in three projects: WordPress, po and
squirrelmail. Surprisingly, seven projects had more cross-
site scripting vulnerabilities at the end of the study, and two
of those (dotproject and phpmyadmin) added more than 100
vulnerabilities of this type. Path manipulation has a simi-
lar profile, though only a single project (dotproject) added
more than 100 vulnerabilities. The same three projects
showed the greatest improvement in path manipulation as
in SQL injection. The vulnerability type with the largest
increase, dangerous file inclusion, is only clearly visible on
the graph for dotproject. No project saw a substantial de-
crease in this error.

The Spearman’s rank correlation coefficient, ρ, was com-
puted for all metrics and vulnerability types for all releases.
Results are significant for ρ > 0.1 (p = 0.001). Using the
Cohen Scale, only one correlation was found to be large (>

0.5), which was between maximum nesting complexity and
dangerous file inclusion (ρ = 0.526). The metric with the
greatest number of medium correlations (0.3 ≤ ρ < 0.5) is
maximum cyclomatic complexity, indicating that the larger
the value of this metric, the more security flaws existed for
the vulnerabilities listed in table 4.

Vulnerability ρ
Command Injection 0.146
Cross-Site Scripting 0.310
Dangerous File Inclusion 0.445
Dangerous Function 0.458
Dynamic Code Evaluation 0.245
File Permission Manipulation 0.415
Hardcoded Domain in HTML 0.255
Open Redirect 0.325
Path Manipulation 0.403

Table 4. MaxCC and Vulnerability Correla-
tions

Seven security vulnerabilities: command injection,
cross-site request forgery, dynamic code evaluation, hard-
coded domain in HTML, Javascript hijacking, often mis-
used, and SQL injection have no correlations above 0.3,
indicating that at best there are weak correlations for the
metrics evaluated here.

7. Security Resource Indicator

To measure the importance of security to a project, we
searched for public security resources made available on
the web site for the project. The security resource indica-
tor is based on four items: documentation of the security
implications of configuring and installing the application, a
dedicated e-mail alias to report security problems, a list or
database of security vulnerabilities specific to the applica-
tion, and documentation of secure development practices,
such as coding standards or techniques to avoid common
secure programming errors.

These indicators differ from those used by Fortify in their
study of Java applications [10] in that we eliminated their
indicator about easy access to security experts, which we
found ambiguous, and we added the last two indicators de-
scribed above, which are focused more on developers than
users of the application. Table 5 shows the indicators for
each project.

We developed a combined security resource indicator
metric (SRI), which is the sum of the four indicator items,
ranging from 0 to 4. Only one project, squirrelmail, had
an SRI value of 4, while three projects had an SRI value of
zero. SRI correlates strongly with change in vulnerability

Project Security Security Vuln Secure
URL Email List Coding

achievo no no no no
dotproject no no no yes
gallery2 yes yes no no
mantisbt no no yes no
mediawiki yes yes no yes
obm no no no no
phpbb no no yes no
phpmyadmin yes yes yes no
phpwebsite no yes no no
po no no no yes
roundcube no no no no
smarty no no no no
squirrelmail yes yes yes yes
wordpress yes yes yes no

Table 5. Security Resource Indicators

Figure 8. Security Resource Indicator vs.
∆SAVD

density from the initial to the final revision. The correla-
tion had a significant (p ¡ 0.05) Spearman’s rank correlation
coefficient, ρ, of 0.67. Figure 8 shows SRI with change
in SAVD. The Photo Organizer and WordPress applications
are off the graph to the left, as both projects made large im-
provements in vulnerability density. A linear trendline for
the displayed data points is included as a visual indicator of
SAVD improvements in projects which focused on security.

8. Analysis Limitations

The fourteen open source PHP projects were the only
projects found on freshmeat.net that met our analysis
criteria. As such, this analysis describes these projects but

extrapolation to other projects should be done with caution.
The choice of language impacts both code size and types of
possible vulnerabilities, so these results may not generalize
to web applications written in other languages. An addi-
tional consideration when reviewing these data is that dif-
ferent software teams developed each web application and
we do not know the details of the software processes used
in their development.

All static analysis tools produce false positive results,
where vulnerabilities are reported that are not actually
present in the code. Our complete code base contained
thousands of vulnerabilities in each of the 100 weekly sam-
ples, making it impractical to manually verify whether each
vulnerability was a false positive or not. Instead, we exam-
ined the first and last revisions of two projects. These two
projects contained 298 vulnerabilities, 54 of which were
false positives. Our estimated false positive rate for For-
tify Source Code Analyzer on this set of web applications
is therefore 18.1%. The studies mentioned above that used
static analysis tools to estimate vulnerability density or de-
fect density did not estimate false positive rates.

9. Conclusion

We studied fourteen open source web applications writ-
ten in PHP from Summer 2006 to Summer 2008, measur-
ing static analysis vulnerability density, SLOC, cyclomatic
complexity, nesting complexity, and churn for one revision
each week. We found that the overall state of security of
these applications was improving, as SAVD decreased from
8.88 vulnerabilities/KLOC to 3.30. While the number of
NVD vulnerabilities was not correlated with SAVD, it was
correlated with the popularity of the project.

Web applications vary widely in both their current num-
ber of vulnerabilities and in the evolution of vulnerability
density over time. Vulnerability densities ranged from 0 to
121.4 at the beginning of the study and from 0.20 to 60.86
at the end of the study. Six of the applications showed a
decreased vulnerability density over the course of the study,
but the other eight increased their vulnerability densities.

We developed a security resources indicator metric to
predict trends in vulnerability density and found that it
was significantly correlated with the change in vulnerabil-
ity density from the initial to the final revision. While three
software metrics–maximum CC, average CC, and average
nesting complexity–showed significant but small correla-
tions with the total code base, no complexity or churn metric
applied to every individual project.

In order to help determine whether the results of this pa-
per can be generalized to a broader class of web applica-
tions, we plan to examine open source Java web application
projects and compare them to the PHP web applications de-
scribed in this paper. A wider variety of software measure-

ment tools exist for Java than for PHP, which would enable
us to study additional software metrics. Finally, we are go-
ing to examine the possibility of using our data to develop
models for predicting the vulnerability density of software
from software metrics.

10. Acknowledgments

We would like to acknowledge Dhanuja Kasturiratna for
assistance with statistics, and we would like to acknowledge
Fred Cohen for helpful criticism.

References

[1] B. Boehm and V.R. Basili, “Software Defect Reduction Top
10 List,” Computer 34, 1 (Jan. 2001), 135-137.

[2] J. Cohen, Statistical power analysis for the behavioral sci-
ences (2nd ed.) New Jersey: Lawrence Erlbaum 1988.

[3] S.M. Christey (CVE Editor), ”Open Letter on
the Interpretation of Vulnerability Statistics,”
http://seclists.org/bugtraq/2006/Jan/0060.html, January
4, 2006.

[4] S.M. Christey and R. A. Martin, http://www.cve.
mitre.org/docs/vuln-trends/index.html,
published May 22, 2007.

[5] http://pear.php.net/package/PHP_
CodeSniffer/ accessed January 4, 2009.

[6] Coverity, ”Open Source Report 2008”, http://scan.
coverity.com/report/Coverity_White_
Paper-Scan_Open_Source_Report_2008.pdf,
May 20, 2008.

[7] http://cve.mitre.org/cve/editorial_
policies/cd_abstraction.html, accessed May
31, 2009.

[8] J. Evers, “Computer crime costs $67 billion, FBI
says,” http://news.cnet.com/2100-7349_
3-6028946.html, January 19, 2006.

[9] N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rigor-
ous and Practical Approach, Brooks/Cole, Massachusetts,
1998.

[10] Fortify Security Research Group and Larry Suto, “Open
Source Security Study,” http://www.fortify.com/
landing/oss/oss_report.jsp, July 2008.

[11] http://freshmeat.net/, accessed January 4, 2009.

[12] IBM Global Technology Services, “IBM Internet Se-
curity Systems X-Force 2008 Mid-Year Trend Statis-
tics”, http://www-935.ibm.com/services/us/
iss/xforce/midyearreport/, published July 2008.

[13] N. Jovanovic, C. Kruegel, E. Kirda, “Pixy: A Static Anal-
ysis Tool for Detecting Web Application Vulnerabilities,”,
Proceedings of the 2006 IEEE Symposium on Security and
Privacy, IEEE, 2006, pp. 258 - 263.

[14] T.J. McCabe, “A Complexity Measure”, IEEE Transactions
on Software Engineering, 2(4), IEEE Press, New York,
1976, pp. 308-320.

[15] G. McGraw, B. Chess, and S. Migues, “Software
[In]security: Software Security Top 10 Surprises”,
informIT, http://www.informit.com/articles/
article.aspx?p=1315431&seqNum=2.

[16] N. Nagappan and T Ball, “Use of Relative Code Churn Mea-
sures to Predict System Defect Density”, Proceedings of the
27th International Conference on Software Engineering, As-
sociation of Computing Machinery, New York, 2005, pp.
284 - 292.

[17] N. Nagappan and T. Ball, “Static analysis tools as early indi-
cators of pre-release defect density”, Proceedings of the 27th
International Conference on Software Engineering, Associ-
ation of Computing Machinery, New York, 2005, pp. 580 -
586.

[18] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Pre-
dict Component Failures”, Proceedings of the 28th Interna-
tional Conference on Software Engineering, Association of
Computing Machinery, New York, 2006, pp. 452 - 461.

[19] NVD, http://nvd.nist.gov/, accessed January 4,
2009.

[20] A. Ozment and S. E. Schechter, “Milk or Wine: Does Soft-
ware Security Improve with Age?”, Proceedings of the 15th
USENIX Security Symposium, USENIX Association, Cali-
fornia, 2006, pp. 93-104.

[21] R. Richardson, 12th Annual CSI Computer Crime and Secu-
rity Survey, http://www.gocsi.com/forms/csi_
survey.jhtml, 2007.

[22] Y. Shin and L. Williams, “An Empirical Model to Predict
Security Vulnerabilities using Code Complexity Metrics”,
Proceedings of the 2nd International Symposium on Empiri-
cal Software Engineering and Measurement, Association for
Computing Machinery, New York, 2008, pp. 315-317.

[23] Y. Shin and L. Williams, “Is Complexity Really the Enemy
of Software Security?”, Quality of Protection Workshop at
the ACM Conference on Computers and Communications
Security (CCS) 2008, Association for Computing Machin-
ery, New York, 2008, pp. 47-50.

[24] D.A. Wheeler, http://www.dwheeler.com/
sloccount/ accessed January 3, 2009.

