An Empirical Study of the Evolution of PHP Web Application Security

Maureen Doyle, James Walden
Department of Computer Science
Northern Kentucky University
Highland Heights, KY 41099
{doylem3, waldenj}@nku,edu

Abstract—Web applications are increasingly subject to mass
attacks, with vulnerabilities found easily in both open source
and commercial applications as evinced by the fact that
approximately half of reported vulnerabilities are found in
web applications. In this paper, we perform an empirical
investigation of the evolution of vulnerabilities in fourteen
of the most widely used open source PHP web applications,
finding that vulnerabilities densities declined from 28.12 to
19.96 vulnerabilities per thousand lines of code from 2006
to 2010. We also investigate whether complexity metrics or a
security resources indicator (SRI) metric can be used to identify
vulnerable web application showing that average cyclomatic
complexity is an effective predictor of vulnerability for several
applications, especially for those with low SRI scores.

Keywords-security metrics; software security; static analysis;
code complexity

I. INTRODUCTION

Web applications are the source of almost half of all
security vulnerabilities, representing 49% of all vulnerability
disclosures reported in IBM’s 2010 X-Force Trend and
Risk Report [12]. This is probably an undercount as many
organizations develop and deploy web applications in-house
whose vulnerabilities are not reported publicly. MITRE
found that the most common two vulnerability types since
2005 were cross-site scripting and SQL injection [5], which
are primarily found in web applications.

While worms that exploit network or operating system
vulnerabilities have largely disappeared, web applications
are regularly targeted by mass attacks such as the April 2011
LizaMoon mass SQL injection attacks [14]. Furthermore,
popular open source web applications such as WordPress
are the subject of mass attacks designed to inject malware
to infect users of their sites [24].

This study is a partial replication of our previous study of
vulnerabilities in fourteen open source PHP web applications
from 2006-2008 [23]. While replication of experiments is
important in all areas of empirical software engineering, it
is particularly important in studies of software security, due
to the rapidly evolving nature of the field, with new types of
vulnerabilities appearing each year. Software that is thought
to be secure one year is discovered to be insecure the next
due to an absence of measures to prevent a type of intrusion
not known before. There were no worries about cross-site

scripting (XSS) before most browsers supported Javascript
in the 1990s or about clickjacking until 2008.

Like the original study, this paper analyzes relationships
between software metrics and vulnerabilities measured using
a static analysis tool in fourteen of the most widely used
open source web applications, including WordPress and Me-
diawiki, the software on which Wikipedia runs. We mined
the source code repositories of these applications to measure
vulnerability density and to collect a variety of software
metrics, including our security resources indicator metric as
well as traditional metrics such as code size and complexity.
This is the largest survey of web application security, both
in terms of code size and number of application users.

There are two important differences between this study
and our previous one. The first is that this study analyzes
the web applications for four years, from 2006-2010, instead
of two. The longer time span allows us to verify whether
the relationships we discovered between complexity and
vulnerabilities were the product of the state of source code in
2006-2008 or whether they hold more generally. The second
is the use of a more recent version of the Fortify Source
Code Analyzer (SCA) tool, which can identify 73 types of
vulnerabilities in PHP code as opposed to only 13 types of
vulnerabilities in the version we used in the original study,
enabling us to find latent vulnerabilities that missed in the
previous study.

Replicating our study over a longer time interval with
newer static analysis tools enabled us to

1) Evaluate whether trends observed in the evolution
of web application security vulnerabilities in open
source PHP applications from mid-2006 to mid-2008
continue through mid-2010.

2) Determine if predictions of vulnerabilities that worked
in 2008 would accurately predict vulnerability evolu-
tion through 2010.

3) Determine if the ability of static analysis tools to
find vulnerabilities in web applications has advanced
substantially from 2008, and to determine whether the
effect of these improvements would alter the trends
observed in the 2008 study.

After discussing our research methodology in section 2, we
describe the data collection process in section 3, aggregate
findings in section 4, vulnerability type analysis in section

5, and complexity metrics in section 6. Section 7 addresses
threats to validity, while section 8 discussed related work.
Section 9 completes the paper, giving conclusions and
describing future work.

II. RESEARCH METHODOLOGY

In this section, we specify our research hypotheses based
on both complexity metrics and the security resources in-
dicator. These metrics have been shown to be effective
for vulnerability prediction in certain domains [3], [11],
[18], [22], [23]. We study several aspects of vulnerabilities,
including the total number of vulnerabilities, the change in
vulnerabilities over time, the vulnerability density (the num-
ber of vulnerabilities per thousand lines of code), the change
in vulnerability density over time, as well as vulnerability
metrics on a category basis.

We also examine changes in the aggregate code base of
the fourteen projects. As vulnerabilities and techniques to
mitigate vulnerabilities become more widely known, then we
might expect that the vulnerability density of open source
projects should improve over time, especially in terms of
common vulnerabilities like cross-site scripting and SQL
injection. This leads to three hypotheses:

1) The vulnerability density of open source web applica-

tions should decrease with time.

2) The density of cross-site scripting vulnerabilities in
open source web applications should decrease with
time.

3) The density of SQL injection vulnerabilities in open
source web applications should decrease with time.

A. Code Complexity

Security experts claim that complexity is the enemy
of security [16]. Complex code is difficult to understand,
maintain, and test, making security vulnerabilities easier to
introduce and more difficult to find and mitigate. As a result,
complex code should include a larger number of security
vulnerabilities than simple code. Based on this reasoning,
we have two hypotheses on code complexity:

1) Applications with higher code complexity have a

higher number of vulnerabilities than applications with
a lower code complexity.

2) Applications with higher code complexity will in-
crease the number of vulnerabilities in the code over
time at a faster rate than applications with lower code
complexity.

McCabe’s cyclomatic complexity [15] and nesting complex-
ity are popular metrics measuring code complexity, and
both metrics have been used to identify vulnerabilities in
software [18], [22]. Nesting complexity counts the depth of
nested conditionals and loops. We examine these complexity
metrics in three forms: maximum complexity, which is the
complexity of the function which has the highest value for
the complexity metric, total complexity, which is the sum

of the complexity metric for the entire application, average
complexity, which is the average value of the metric per
function, and average complexity per file.

B. Security Resources Indicator

In our previous study, we created a metric to measure the
importance of security to a project, based on public security
resources made available on the web site for the project.
The Security Resource Indicator (SRI) metric is based on
four items: documentation of the security implications of
configuring and installing the application, a dedicated email
alias to report security problems, a list or database of security
vulnerabilities specific to the application, and documentation
of secure development practices, such as coding standards
or techniques to avoid common secure programming errors.
SRI is the sum of the four indicator items, ranging from 0
to 4. These indicators differ from a similar set of indicators
used by Fortify in their study of Java applications [9] in that
we eliminated their indicator about easy access to security
experts, which we found ambiguous, and we added the last
two indicators described above, which are focused more on
developers than users of the application.

We expect that projects whose developers focus their
attention on security will improve the security of their code
over time. If a project does not focus resources on security,
we expect the project to operate in a reactive mode, fixing
vulnerabilties as they are reported, while a security-focused
project would use active measures such as developer educa-
tion and code reviews to prevent vulnerabilities from being
introduced into code. As a result, we have the following
hypothesis:

1) Applications with high SRI values should see a de-
crease in vulnerability density over time.

III. DATA COLLECTION

In 2008, we examined the project history of open source
web applications written in PHP that were selected from the
most popular open source web applications on freshmeat.net,
all of which had a subversion code repository with at
least two years of history. Only fourteen applications met
these criteria. Two projects were project management ap-
plications (achievo and dotproject), two were photo orga-
nizers (gallery2 and po), and two were webmail systems
(roundcube and squirrelmail). Of the remaining applications,
MantisBT is a bug tracking system, mediawiki is the wiki
system that runs Wikipedia, phpbb is one of the most popular
webforum systems, phpmyadmin is a MySQL administra-
tion interface, phpwebsite is a content management system,
smarty is a templating engine, and WordPress is one of the
most popular blogging engines.

A. Source Code

When we revisited the study in 2011, we found that
three of the applications (dotproject, mantisbt, and po) had

Table I
PHP OPEN SOURCE WEB APPLICATIONS

achievo obm roundcube
dotproject ~ phpbb smarty
gallery2 phpmyadmin squirrelmail
mantisbt phpwebsite wordpress

mediawiki po

migrated their repositories from subversion to git, a decen-
tralized version control system. In order to collect data from
all fourteen applications in a uniform fashion, we imported
the subversion repositories of the other applications into
git. Decentralized source code management systems offer
data that centralized systems do not, but they also present
problems to source code mining, as their history is more
complex and can be easily modified by developers [1]. Since
we imported some of our repositories from subversion, we
could not take advantage of the additional information about
commits provided by git, though the fact that git checkouts
are orders of magnitude faster than subversion checkouts
helped us process the data more quickly.

Another issue we found with git was that two of the ap-
plications that had migrated to git, dotproject and mantisbt,
had more lines of code for commits in their git repositories
than they had for the original commits in their subversion
repositories. We did not observe this type of discrepancy
with po or with any of the projects that we imported from
subversion to git, which indicates that those two projects
must have made changes beyond a simple git import when
converting their repositories.

We created a Ruby script to import all of the repositories,
and we stored our copies of the repositories locally using
gitosis to manage them. In order to observe the projects
at identical time intervals, we selected a single revision
from each week from June 1, 2006 through June 1, 2010 to
analyze, choosing the first change made during that week. If
no commit was made during a week, we replicated data from
the previous week. We could not use public releases of these
applications for our study, since public releases are too few
and irregular in schedule. It is common enough to deploy
code directory from source code repositories that several of
these projects have HowTo documents written to help non-
technical users do this.

While the initial revision of one project (smarty) was
small, with only 5750 lines of code, the size of first revisions
of the remaining projects ranged from 25,000 to 150,000
lines. However, some of the applications grew considerably
over the four year period, with mediawiki being the largest at
588,763 lines of code in its final revision. Two other projects
(phpwebsite and obm) had final revisions that exceeded
200,000 lines of code.

B. Static Analysis

We chose static analysis as our technique to measure
vulnerabilities instead of using reported vulnerabilities for
several reasons. Unlike the process of manual code review
or penetration testing which produces reported vulnerabili-
ties, static analysis is an objective, repeatable, and scalable
technique for measuring vulnerabilities. Static analysis tools
apply the same algorithms and rulesets each time they are
used, and can scan a project in a matter of hours rather
than days or weeks. Vulnerabilities can remain latent in
code for years before a researcher discovers and reports
them [13], which means that reported vulnerabilities are an
undercount of the actual number of vulnerabilities by an
unknown amount.

Using static analysis enabled us to perform a fine-grained
study of the evolution of an application’s vulnerabilities.
Static analysis enabled us to detect changes in the number of
vulnerabilities on a weekly basis, observing vulnerabilities
near both the time of their introduction and their removal,
whereas reported vulnerabilities from a source like the
National Vulnerability Database [19] are few in number
compared to static analysis findings and are not found on
any regular basis. We found an order of magnitude more
vulnerabilities with our static analysis tool than are reported
for the set of applications. Part of this difference can be
explained by the Common Vulnerabilities and Exposures
(CVE) guidelines, requiring that vulnerabilities of the same
type in the same version of an application be merged into
a single entry [8]. A more complete discussion of the
issues in interpreting reported vulnerability statistics can be
found in [4]. However, some SCA vulnerabilities are false
positives, which are discussed with other threats to validity
below. The false positive rate is not high enough to reduce
the number of vulnerabilities found to a quantity similar to
the number of reported vulnerabilities.

We used version 5.10 of the Fortify Source Code Analyzer
as our static analysis tool. Since we needed to scan over a
hundred revisions for each of our 14 applications, consisting
of over 100 million line of code, we needed a way to perform
the scans in parallel. BuildBot is a widely used continuous
integration tool which automates the compilation and testing
of application code pulled from source code repositories.
It is designed to perform builds on a distributed set of
heterogenous servers. The Mozilla project has a BuildBot
farm of over 700 machines [2].

We created Ruby scripts to select weekly revisions from
an application’s git repository and automate the creation of
Python configuration files for BuildBot 0.8.3. The BuildBot
configuration contained instructions to scan each weekly
revision using a shell script that checked out the source code,
ran metric tools including SCA, and stored the resulting data
on an NFS volume. SCA was run indirectly through scan-
projects, a Ruby program designed to manage the multi-

step process to run SCA, handle errors, and summarize the
resulting XML vulnerability report into a short CSV output
file. Data stored included metadata, such as project name,
command line options, location, and timestamps, the XML
report and command output from SCA, SLOCCount output,
and a CSV file summarizing the information from all of the
metrics tools.

Our BuildBot farm consisted of five 64-bit Ubuntu Linux
10.04.2 servers, ranging from a dual-core 2GB machine
capable of running one build at a time to a 16-core 16GB
machine that can run six builds simultaneously. BuildBot
would dispatch new revisions to each slave as soon as old
revisions were completed. Builds that failed were reported
through a web interface, which also provided links to rebuild
any failed builds. The number of build failures ranged from
zero to half a dozen, resulting from SLOCcount failures, but
all succeeded on the first rebuild. Once all selected revisions
of an application were scanned, we used another Ruby script
to collect and reformat the data files from each revision into
a single CSV file that could be imported into a statistics
package for analysis.

C. Metrics

In addition to counting vulnerabilities, our BuildBot con-
figuration collected and analyzed the following software
metrics: SLOC, cyclomatic complexity, and nesting com-
plexity. While SCA is a commercial static analysis tool, our
other metric tools were open source tools packaged with
Ubuntu Linux 10.04. Cyclomatic Complexity and Nesting
Complexity were computed using PHP CodeSniffer 1.10 [6]
with custom classes and a Ruby script to extract only the
data we needed.

In our previous study, we used SLOCCount 2.26 [25]
to measure SLOC. However, this tool returned inconsistent
results when run multiple times on the same source code,
sometimes failing to report results at all. Therefore, we
used Fortify SCA to count code in this study, which returns
consistent SLOC counts for code, and as it is the same tool
that we used to find vulnerabilities, we expect that it counts
the same code that it finds vulnerabilities in. We still run
SLOCCount on each revision as part of a check to ensure
that our BuildBot-based system produced the same results as
our previous study. SLOC metrics from SCA are lower than
those from SLOCCount, as SCA SLOC does not include
lines with only braces or declarations.

We measured vulnerability density using the static analy-
sis vulnerability density (SAVD) metric [7] We used results
from Fortify SCA version 5.10 to compute SAVD, as SCA
reported both the number of vulnerabilities and SLOC. This
means that both the numerator and denominator of SAVD
differ from the original study, which results in much higher
SAVD values due to both the larger number of vulnerabilities
found and the smaller code size values. Since Fortify SCA
also categorized vulnerabilities into types such as cross-

100000 T
| *
10000 4 'p ‘ '.‘ ‘
& L=
. e P /;’/-.;.E... L ‘ L1
- > R e
z / “\C;';q‘. ;
K ” (3
100 _.3'..‘ ‘
e otalvul I
f | |
—— Linear (totalyulns)
il ‘ () }
| |
|
: | |
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
sloc
Figure 1. SLOC vs. Vulnerabilities for All Project Versions
Table II
AGGREGATE DATA
[Datum [[2006 [2007 [2008 [2009 [2010]
SLOC 684,654 | 782,870 | 864,113 | 980,029 | 1,182,917
Vulnerabilities 19,253 17,404 24,529 24,707 23,613
OWASP Top 10 14,742 12,467 17,970 17,623 17,389
SAVD 28.12 2223 28.38 25.21 19.96

site scripting and SQL injection, we could also measure
vulnerability density for particular types of vulnerabilities.

IV. AGGREGATE FINDINGS

The size of the aggregate code base for all fourteen
projects steadily grew from 684,654 sources line of code
in mid-2006 to 1,182,917 lines of code in mid-2010. The
number of vulnerabilities also grew throughout that time
period from 19,253 to 23,613, though not steadily, as there
was a large decrease in 2007 followed by a large increase
in 2008. We found that the relationship between the number
of vulnerabilities in a version and the code size was roughly
linear and plotted in Figure 1 using a logarithmic scale.
Clusters of data points are typically different versions from
the same application. As the number of vulnerabilities grew
slower than the the size of the code, vulnerability density
decreased strongly from 28.12 vulnerabilities per thousand
lines of code to 19.96. Table II summarizes the findings of
this analysis.

While the overall trend was towards lower vulnerability
density, individual projects evolved differently, with eight
projects decreasing vulnerability density over the study and
six projects increasing. In our previous study, only six
projects had declining vulnerability densities. While SAVD
declined for eight projects, the total number of vulnerabil-
ities only declined for four of those projects: phpbb, po,
smarty, and squirrelmail.

—-achievo ~ --dotproject -—+-gallery2 ——mantisbt ——mediawiki -e-obm ——phpbb

-#-roundcube wordpress

—phpmyadmin

phpwebsite ——po smarty squirrelmail

wordpress
phpmyadmi

wordpress.

wordpress
dotproject

dotproject

i M
phpbb
phpbbﬁm
obm- 2 = obm
e squirrelmail smarty. ~ squirrelmail— ty
- - ite

T B
me%ﬁmk’r\\ phpwebsite = phpwebsi
———— o =

phpwebsite

dotproject

mantisbt

galtery2——————

roundcube

R— H

phpbb

.‘Mo achievo
achievo
2006 2007 2008 2009 2010
Figure 2. SAVD Evolution by Project

Vulnerability densities varied widely, from 2.1 vulnera-
bilities per thousand lines of code (achievo) to 202 (po)
in June 2006, evolving to 2.7 (achievo) to 206 (po) in
June 2010. Figure 2 shows the evolution of SAVD for each
of the fourteen projects from year to year. Both of the
highest SAVD projects, phpmyadmin and po, contained a
set of vulnerabilities made up mostly of cross-site scripting
vulnerabilities, and had hundreds of commits related to in-
ternationalization efforts, which caused swings of thousands
of vulnerabilities within a week or two at times.

Figure 3 plots the SLOC and vulnerability counts for
WordPress over the four-year period. In early 2007, a release
of WordPress eliminated about a thousand vulnerabilities;
however as new code was added, so were new vulnera-
bilities. WordPress contributors demonstrated that they can
write more secure software; however, there are very few
corrections being made after 2007. This approach seems
characteristic of a project that does not have consistent secu-
rity processes. However, squirrelmail, as shown in Figure 4,
consistently fixed vulnerabilities over the four year period,
without introducing a large number of new errors, even as
the code grew in size.

V. VULNERABILITY TYPE ANALYSIS

In this section, we examine the evolution of the frequency
of vulnerability types over time. SCA 5.10 has the ability to
identify 73 categories of vulnerabilities, 23 of which were
detected in the fourteen projects. The Open Web Application
Security Project (OWASP) identified the ten most critical
web application vulnerabilities for 2010 [20]. As there is
no standard categorization of vulnerabilities used by all
static analysis tools, we also report on the subset of the
SCA vulnerability types that match the OWASP Top 10
vulnerabilities. Note that some of the vulnerability types
reported by SCA, such as Dangerous Function, do not

100000 - 2500
90000
80000 2000
70000 g
60000 it ¥ 1500 8
g g
o =
S 50000 3
40000 - 1000 @
]
30000 =
20000 500
10000
0 Lo
6/1/2006 6/1/2007 6/1/2008 6/1/2009
+—SLOC =—==—totalvulns
Figure 3. WordPress
63000 - 600
e
—
62000 L. 1 500
T e
61000 - a0 g
8 oo E
= 1 [ad | =
@ 60000 Ao - 300 @
! £
59000 200 H
58000 -~ 100
57000 0
6/3/2006 6/3/2007 6/3/2008 6/3/2009
SLOC =—+=—totalvulns

Figure 4. Squirrelmail

match any of the OWASP Top 10 vulnerabilities, while
other Top 10 vulnerabilities match multiple SCA categories,
such as Injection, which subsumes both the SQL Injection
and Command Injection categories reported by SCA. Some
Top 10 vulnerabilities, such as Unvalidated Redirects and
Forwards, are not reported by SCA. The OWASP Top 10
vulnerabilities are listed in Table III.

Twelve of the 23 reported vulnerability types, representing
over 70% of vulnerabilities found, are in the OWASP Top 10.

Table III
OWASP Top 10 WEB APPLICATION SECURITY VULNERABILITIES
Al | Injection A6 Security Misconfiguration
A2 | Cross-Site Scripting A7 Insecure Cryptographic
Storage
A3 | Broken Authentication A8 Failure to Restrict
and Session Management URL Access
A4 | Insecure Direct Object A9 Insufficient Transport
References Layer Protection
A5 | Cross-Site Request A10 | Unvalidated Redirects
Forgery and Forwards

Cross-Site Scripting I S A2

Password 1

System Information Leak]
e = i
Path Manipulation A4

Dangerous File Inclusion]

Header Manipulation]
Insecure Randomness I S A7
Hidden Field]

Log Forging]

Cookie Security A7

Command Injection Al

Weak Cryptographic Hash | A7
Cross-Site Request Forgery 7— A5

1 10 100 1000

Average Vulnerability Types Detected

Figure 5. Aggregate Vulnerabilities by Type

vulnerability count s

-2000 -1000 0 1000 2000 3000 4000

SOl Tnjection |
Password Managemdﬁ
Path Manipulatidﬁ
Hidden Field 7]
Header Manipulation _:I
Insecure Randomness _j
Weak Cryptographic Hash 7:!
Dangerous File Inclusion 7:]
System Information Leak 7:|

Cross-Site Scripting

Figure 6. Change in Vulnerabilities by Type 2006-2010

The most frequently reported vulnerabilities included four of
the top five OWASP web application security vulnerabilities,
with cross-site scripting being the most common vulnerabil-
ity in our code base as it is in the NVD. Figure 5 displays the
top 14 vulnerabilities for the total code base. Vulnerabilities
included in the OWASP Top 10 are emphasized by darker
bars, with the OWASP vulnerability identifier beside them.

Figure 6 displays the ten largest changes in the number
of vulnerabilities in each category. Two of our hypotheses
concerned changes in the number of vulnerabilities in the
most common categories:

1) The density of cross-site scripting vulnerabilities in
open source web applications should decrease with
time.

2) The density of SQL injection vulnerabilities in open
source web applications should decrease with time.

While our data supports the second hypothesis, it contradicts
the first one, as the number of cross-site scripting vulnera-
bilities increased over the four year time span during which
the number of SQL injection vulnerabilities decreased.
Figure 7 shows the changes in vulnerability types for each

02006-2007 2007-2008 = 2008-2009 m2009-2010

5267

]
3

. =l

. Change Vulnerability Counts
°

Al-Injection A2-XSS Ad-Insecure Direct Object A7-Insecure Cryptographic
References Storage

400
600
-800

1190) 1110
-1000 L

-1190
Figure 7. Annual Change in Top Vulnerabilities

year that we examined. When we look at the time evolution
of the most common vulnerability types on an annual basis,
we find that the change in vulnerabilities is not consistent
from year to year. The alternation of adding and removing
vulnerabilities implies that there is no consistent focus on
software security in open source web applications.

VI. ANALYSIS

This section is divided into three subsections. We analyze
the projects individually on a weekly basis, we analyze the
aggregate code base of all fourteen projects together on an
annual basis, and finally we discuss analysis for the SRI
metric.

The same analysis techniques are applied in each subsec-
tion. Spearman’s rank correlation coefficients are computed
between SAVD and cyclomatic and nesting complexity in
four variants: maximum, average per function, average per
file, and total. Spearman’s rank correlations were selected,
because Pearson’s correlation assumes that the data follows
a normal distribution.

A. Per-Project Analysis

Each web application project was analyzed on a weekly
basis. No single metric correlated strongly with vulnerability
density for all projects, as was also the case in our previous
study. Only one metric, average cyclomatic complexity per
function, had strong signficant correlations for more than
three projects. Table IV summarizes the results. All are
significant with p < 0.0001.

Five of the fourteen projects have strong correlations
between cyclomatic complexity and SAVD, supporting our
hypothesis that applications with higher complexity will
have higher vulnerabilities; however, three projects, php-
myadmin (-0.53), smarty (-0.65), squirrelmail (-0.84), have
strong negative correlations between average cyclomatic

Table IV
CORRELATIONS OF SAVD WITH AVGCC

SRI <2 SRI > 2
Name P Name P
achievo -0.45 | gallery2 -0.26
dotproject 0.12 mantisbt 0.62
obm 0.67 mediawiki -0.39
phpbb 0.53 phpmyadmin | -0.53
phpwebsite | 0.79 squirrelmail -0.84
po 0.75 wordpress -0.09
roundcube -0.39
smarty -0.65
1
0.8
A avgcce
06 A avgce
0 sloccount sloccount
‘ avgce B marce
* A avgee
° °] .maxcc maxcc avgecfile
: L 2008 S 2008 SRI otalec
5 o e 42008 SRI o .
g X [sloccou mexne
4 A avgee * x sloccotn maxce avgne
0.2 2008 SRl -avencfile

sloccount

? A avgcc totalnc
. maxcc
#sloc

*
‘ sloccount *20%%%!

°
06 . maxcc

2008 SRI

20062007 2007-2008 2008-2009 2009-2010 2006-2010

Year Delta

Figure 8. Correlations for Aggregate Code Base

complexity and SAVD. To explore the reasons for these
differences, we examine the effect of SRI scores on these
correlations.

Three of the eight projects with a SRI less than or equal
to 2 negatively correlate to SAVD while only mantisbt
had a high SRI and a positive correlation. The mostly
negative correlations in the high SRI category show that
those projects were better able to secure complex code than
the positively correlated projects in the low SRI category.
This result implies that the greater focus on security shown
by high SRI scores indicates a capability to produce more
secure code.

B. Aggregate Analysis

We examined the annual average metrics for all projects
to determine if there were strong correlations for the change
in metrics to the change in SAVD on a yearly basis. In
our previous study, the differences were computed over the
entire two year span.

The strongest correlation coefficient for the aggregate
code base over multiple years is average cyclomatic com-
plexity with correlation coefficients of 0.35, -0.14, 0.75,

0.59 for 2006-2007, 2007-2008, 2008-2009 and 2009-2010
respectively. Only two of the results: 0.75 (p = 0.001) and
0.59 (p = 0.02) are significant. Figure 8 shows the Spear-
man’s p for all delta metrics measured versus delta in SAVD
evaluated annually. Three metrics, average CC, maximum
CC, and SRI, have larger icons indicating that they were
signficant and stongly correlated for at least one time period.
The average CC and 2008 SRI both appear promising, while
the maximum CC does not, since it correlates negatively
to SAVD. In 2009-2010, both maximum CC and SAVD
increased; however, phpmyadmin had the largest increase in
maximum CC while improving its SAVD slightly by reduc-
ing both its SLOC by 39K lines and vulnerabilities by 5660.
The analysis was also done while removing phpmyadmin
and po. In this analysis, the maximum CC correlation is not
signficant, although it still negative (p = —0.39).

C. Security Resources Indicator

We found in 2009 that the SRI was a better predictor
of improvements in vulnerability density than code size,
complexity, or churn metrics for open source PHP web
applications [23]. Table V shows SRI values measured in
2009 and 2011 for each project. The values for the four
components are for the 2011 values. Only two projects,
squirrelmail and wordpress, had perfect SRI scores of 4,
while three projects had an SRI value of zero in both 2009
and 2011.

Table V
SECURITY RESOURCE INDICATOR

Project SRI SRI | Security | Security | Vuln | Secure

2009 | 2011 URL Email List | Coding
achievo 0 0 no no no no
dotproject 1 2 no yes no yes
gallery2 2 3 yes yes yes no
mantisbt 1 3 yes yes yes no
mediawiki 3 3 yes yes no yes
obm 0 0 no no no no
phpbb 1 1 no no yes no
phpmyadmin 3 3 yes yes yes no
phpwebsite 1 1 no yes no no
po 1 1 no no no yes
roundcube 0 0 no no no no
smarty 0 0 no no no no
squirrelmail 4 4 yes yes yes yes
wordpress 3 4 yes yes yes yes

We found that the 2009 SRI value correlated strongly with
change in vulnerability density as measured by SCA 5.1
from 2006 to 2008, with a significant (p < 0.05) Spear-
man’s rank correlation coefficient, p, of 0.67. However, the
correlations of the change in vulnerability density from 2006
to 2010 as measured by SCA 5.10 with the 2009 and the
2011 SRI values were small (p = 0.21 and p = 0.27
respectively) and were not significant. The 2009 SRI had
a strong correlation with SAVD for the 2006-2007 year
(p = —0.75, p = 0.001), but there are weak correlations for

subsequent years with correlation coefficients of 0.08, 0.05,
0.09 for 2007-2008, 2008-2009 and 2009-2010 respectively.
However, none of those three correlations are significant.

VII. THREATS TO VALIDITY

Since our vulnerability data is based on static analysis re-
sults, our data includes false positives, where vulnerabilities
are reported that are not actually present in the code. Manual
code reviews to verify the tool’s vulnerability reports for two
open source PHP web applications yielded a false positive
rate of 18%. This number is consistent with the false positive
rate of less than 20% reported by Coverity [7]. Note that we
did not attempt to exploit these vulnerabilities.

Our data also includes false negatives, in which the static
analysis tool fails to report some vulnerabilities. Version 5.1
of Source Code Analyzer used in our 2006-2008 study
reported only thirteen categories of vulnerabilities for PHP
code, while version 5.10 used in the current study reports
73 categories of vulnerabilities (though only 23 of those
categories were reported for the code that we examined.)
While version 5.10 found more vulnerabilities, we detected
the same trends in increasing or decreasing numbers of
vulnerabilities for the 2006-2008 time period as we did with
version 5.1. Of course, data based on reported vulnerabil-
ities also includes latent unreported vulnerabilities. Indeed,
during the course of our analysis, new vulnerabilities were
reported in the NVD for our 14 projects.

We attempted to limit internal validity threats by au-
tomating as much of the data collection as possible and
by validating our data collection tools and processes. The
data collection software libraries and tools were tested with
a unit test suite to verify that the results produced were
correct and that code modifications did not alter the results.
We also manually inspected a subset of the data.

In order to replicate a study involving mining software
repositories, researchers need the public availability of the
raw data, the processed data, and of the tools and scripts used
in the study [21]. To address threats to replicability, we plan
to make the fourteen git repositories used publicly available,
along with our public data, and the git repositories in which
we store our scripts and tools. While we cannot provide
copies of SCA, Fortify offers a free license to academic
researchers and our data includes the XML reports produced
by SCA and a Ruby gem providing an interface to extract
information from those reports.

As with any empirical study, our results may not be
generalizable to applications beyond the set of fourteen open
source PHP web applications that we studied. To generalize
the correlations described in this paper to other projects
in different languages, application domains, or sizes would
require additional studies.

VIII. RELATED WORK

Shin et. al. [22] found correlations between complexity,
churn, and developer metrics and vulnerable files in both

Firefox and Linux. Models using all three types of metrics
together predicted over 80% of the known vulnerable files.
Nagappan et. al. [18] had mixed results, with three projects
out of five showing strong correlations between defect
density and cyclomatic complexity. Nagappan’s group also
used static analysis tools to measure defect density [17].
Note that defect density may not correlate with vulnerability
density, as security flaws differ from reliability flaws in both
nature and number.

Gegick and Williams [10] developed a model to identify
vulnerable components using alert density from a static
analysis tool. Gegick et. al. [11] combined static analysis
alert density with code churn and SLOC to build prediction
models to identify attack-prone components in a commeri-
cial telecommunications system.

Coverity has reported annually on their analysis of a large
number of open source projects written in C and C++ [7]
since 2008, finding roughly one static analysis defect per
thousand lines of code on average. They found little change
in the frequency of different vulnerability types reported
since 2008, but their analysis included no web applications.
Fortify analyzed a small number of Java projects [9] with
their static analysis tool and also evaluated the access to
security expertise that each project provided, observing
whether each project provided a security contact email, a
security URL, and easy access to security experts.

It is unknown whether the results of the papers described
above can be generalized to web applications, as web
applications handle input and output in a different manner
than the traditional desktop or server applications that were
analyzed in these studies and are subject to a different set
of vulnerability types.

IX. CONCLUSION

The goals of this study were to determine if the security
of open source web applications was improving over time
and to determine if complexity metrics or SRI could identify
vulnerable applications. We found that the security of open
source web applications improved from mid-2006 to mid-
2010, with vulnerability density declining from 28.12 to
19.96 vulnerabilities per thousand lines of code. If we
exclude the two most vulnerable applications, the decline
is from 11.12 to 8.43. However, these numbers are still
well above the approximately one vulnerability per KSLOC
found in traditional desktop and server applications written
in C and C++ [7], which demonstrates that web application
security is not as mature as the security of traditional
applications. That said, it is heartening to see a drop in
SAVD, indicating that new code added to these applications
introduced fewer vulnerabilities per KSLOC than the exist-
ing code base contained.

Individual projects varied considerably, with eight of the
fourteen projects having declining vulnerability densities
over time. Four of the projects declined in total number of

vulnerabilities too, with reductions in SQL injection vulner-
abilities making up much of the decline. However, several
thousand additional cross-site scripting vulnerabilities, many
of them introduced in the process of internationalizing
phpmyadmin and po, were added to the code base.

No single metric could distinguish high vulnerability web
applications from low vulnerability ones. However, average
cyclomatic complexity per function was an effective pre-
dictor for several applications, especially when SRI scores
were used to classify applications into high and low security
focus applications. Applications in the high SRI score did
not have positive correlations of SAVD with complexity with
the single exception of mantisbt, while most applications in
the low SRI category had positive correlations of complexity
with SAVD. The average CC and SRI combination will be
explored in future work. By itself, SRI was not an effective
predictor of decreasing SAVD except for the 2006-2007
annum.

ACKNOWLEDGMENT

The authors would like to thank John Murray for helping
to write several tools to automate distributed static analysis
of git repositories using BuildBot.

REFERENCES

[1] C. Bird et. al., “The Promises and Perils of Mining Git,”
pp-1-10, 2009 6th IEEE International Working Conference on
Mining Software Repositories, 2009.

[2] BuildBot, http://trac.buildbot.net/wiki/SuccessStories, accessed
June 4, 2011.

[3] I.Chowdhury and M.Zulkernine. 2011. Using complexity, cou-
pling, and cohesion metrics as early indicators of vulnerabili-
ties. J. Syst. Archit. 57, 3 (March 2011), 294-313.

[4] SM. Christey (CVE Editor), “Open
the Interpretation of Vulnerability
http://seclists.org/bugtraq/2006/Jan/0060.html,
2006.

Letter on
Statistics,”
January 4,

[5] S.M. Christey and R. A. Martin, http://www.cve.mitre.org/
docs/vuln-trends/index.html, published May 22, 2007.

[6] http://pear.php.net/package/PHP_CodeSniffer/ accessed June 4,
2011.

[7]1 Coverity, “Coverity Scan: 2010 Open Source
Integrity Report,” http://www.coverity.com/library/pdt/
coverity-scan-2010-open-source-integrity-report.pdf, Nov 1,
2010.

[8] http://cve.mitre.org/cve/editorial_policies/cd_abstraction.html,
accessed June 4, 2011.

[9] Fortify Security Research Group and Larry Suto, “Open
Source Security Study,” http://www.fortify.com/landing/oss/
oss_report.jsp, July 2008.

[10] M. Gegick and L. Williams. 2007. “Toward the Use of
Automated Static Analysis Alerts for Early Identification of
Vulnerability- and Attack-prone Components.” In Proceedings
of the Second International Conference on Internet Monitoring
and Protection (ICIMP ’07). IEEE Computer Society, Wash-
ington, DC, USA.

[11] M. Gegick, L. Williams, J. Osborne, and M. Vouk. 2008.
Prioritizing software security fortification through code-level
metrics. In Proceedings of the 4th ACM workshop on Quality
of protection (QoP ’08). ACM, New York, NY, USA, 31-38.

[12] IBM Global Technology Services, “IBM Internet Secu-
rity Systems X-Force 2010 Trend and Risk Report”, http:
/Iwww-935.ibm.com/services/us/iss/xforce/trendreports/, pub-
lished March 2011.

[13] E Massacci, S. Neuhaus, and V. Nguyen. 2011. “After-life
vulnerabilities: a study on firefox evolution, its vulnerabilities,
and fixes.” In Proceedings of the Third international confer-
ence on Engineering secure software and systems (ESSoS’11),
Springer-Verlag, Berlin, Heidelberg, 195-208.

[14] ERashid, “LizaMoon Mass SQL Injection Attack Points to
Rogue AV Site,” eWeek, http://www.eweek.com/c/a/Security/
LizaMoon-Mass-SQL-Injection- Attack-Points-to-Rogue- AV-
Site-852537/, March 29, 2011.

[15] T.J. McCabe, “A Complexity Measure”, IEEE Transactions
on Software Engineering, 2(4), IEEE Press, New York, 1976,
pp. 308-320.

[16] G. McGraw, Software Security: Building Security In, Boston,
NY, Addison-Wesley, 2006.

[17] N. Nagappan and T. Ball, “Static analysis tools as early
indicators of pre-release defect density”, Proceedings of the
27th International Conference on Software Engineering, As-
sociation of Computing Machinery, New York, 2005, pp. 580
- 586.

[18] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to
Predict Component Failures”, Proceedings of the 28th Inter-
national Conference on Software Engineering, Association of
Computing Machinery, New York, 2006, pp. 452 - 461.

[19] NVD, http://nvd.nist.gov/, accessed June 4, 2011.

[20] OWASP, https://www.owasp.org/index.php/Top_10_
2010-Main, accessed June 4, 2011.

[21] G. Robles. “Replicating MSR: A Study of the Potential
Replicability of Papers Published in the Mining Software
Repositories Proceedings.” In Proceedings of the Working
Conference on Mining Software Repositories, 2010.

[22] Y.Shin, A.Meneely, L.Williams, J.Osbourne, Evaluating Com-
plexity, Code Churn, and Developer Activity Metrics as Indica-
tors of Software Vulnerabilities, IEEE Transactions in Software
Engineering, to appear, 2011.

[23] J.Walden, M.Doyle, G.Welch, M.Whelan, “Security of Open
Source Web Applications,” Proc. International Workshop
on Security Measurements and Metrics (MetriSec’09), Lake
Buena Vista, Florida, Oct. 14, 2009.

[24] Web Application Security Consortium, Web Application
Hacking Incident Database, http://projects.webappsec.org/
w/page/13246995/Web-Hacking-Incident-Database, accessed
June 4, 2011.

[25] D.A. Wheeler, http://www.dwheeler.com/sloccount/ accessed
June 4, 2011.

