
Software Vulnerability Prediction using Text Analysis
Techniques

Aram Hovsepyan, Riccardo Scandariato,
Wouter Joosen

IBBT-DistriNet, Katholieke Universiteit Leuven,
Belgium

{first.last}@cs.kuleuven.be

James Walden
Department of Computer Science, Northern

Kentucky University
waldenj@nku.edu

ABSTRACT
Early identification of software vulnerabilities is essential in
software engineering and can help reduce not only costs, but
also prevent loss of reputation and damaging litigations for
a software firm. Techniques and tools for software vulner-
ability prediction are thus invaluable. Most of the existing
techniques rely on using component characteristic(s) (like
code complexity, code churn) for the vulnerability predic-
tion. In this position paper, we present a novel approach
for vulnerability prediction that leverages on the analysis of
raw source code as text, instead of using “cooked” features.
Our initial results seem to be very promising as the predic-
tion model achieves an average accuracy of 0.87, precision
of 0.85 and recall of 0.88 on 18 versions of a large mobile
application.

1. INTRODUCTION
Software security is a crucial concern within the software

development process as software vulnerabilities can not only
incur additional costs, but also cause severe damages to an
organization. It is essential to have the right tools and tech-
niques in order to assess and predict the vulnerability of
software components produced by the development team(s).

In this position paper, we propose a novel approach for
vulnerability prediction of a software component. Our ap-
proach is based on creating and using a prediction model by
means of machine learning techniques. Although this idea is
not new, most of the existing works are focused on security
vulnerability prediction based on various derived features
of the source code (e.g., total lines of code, total complex-
ity, code churn, etc.). As opposed to these, we propose an
approach that relies on the textual analysis of the source
code and treats every monogram in that source as a feature.
In the context of this paper we have used a version of an
email client application for Android for building the predic-
tion model. We have predicted 18 subsequent versions of the
same application with a very good precision, but low recall.

The remainder of our paper is organized is as follows. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MetriSec’12 September 21, Lund, Sweden
Copyright 2012 ACM 978-1-60558-958-9/10/03 ...$15.00.

section 2, we provide an overview of the related work. In
section 3, we present our approach for classifying a compo-
nent based on the source code. In section 4, we summarize
our preliminary findings. Finally, section 5 concludes the
paper and provides an outline of the future research path.

2. RELATED WORK
While there is a large body of work on defect prediction,

the body of work on vulnerability prediction is smaller. Vul-
nerabilities differ from defects in that there are many fewer
security flaws in code compared to defects, and defect pre-
diction techniques do not directly transfer to the task of
vulnerability prediction.
Neuhaus et al. [4] have focused on investigating the corre-
lation between vulnerabilities and import statements. They
have successfully leveraged machine learning techniques to
predict vulnerabilities based on imports in the context of
the Mozilla project. Neuhaus et al. have reported average
precision of 0.70 and recall of 0.45.
Zimmermann et al. [8] have investigated the correlation
between vulnerabilities and various metrics measuring code
churn, code complexity, dependencies, code coverage, orga-
nizational measures and actual dependencies. With a sta-
tistical significance they have found a weak correlation for
each of the investigated metric. The authors have also used
logistic regression methods to predict vulnerabilities based
on these metrics. The study was performed in the context
of a proprietary commercial product, i.e., Windows Vista.
The results of the study indicate that most metrics can actu-
ally predict vulnerabilities with an average to good precision
(median precision was 0.60), but with a relatively low recall
(median recall was 0.40).
A study by Shin et al. [5] explored the relationship between
complexity, code churn and developer activity metrics with
vulnerabilities. The authors have utilized two classification
techniques, i.e., linear discriminant analysis and Bayesian
network. They have determined that these metrics are in-
deed predictive of vulnerabilities.
All these approaches rely on extracting certain features from
the source code (e.g., complexity, number of imports, code
churn, etc.) and using them for building a prediction model.
As opposed to these techniques in our approach we propose
to use the source code itself for building a prediction model.
The advantage of this method is that it does not make any
assumptions regarding the impact of a certain feature on the
software vulnerabilities. The machine learning techniques
have yet to create these features based on the complete code
base. The disadvantage of this approach is that the learning

may fail to create any meaningful features. In the following
section, we present the proposed approach in detail.

3. OUR APPROACH
As Java is a language, we looked at Java files as text. The

starting point for our approach is the source code of a soft-
ware system that consists of a number of Java files. Each file
is transformed into a feature vector where every word (also
called a “monogram” in text processing) within that file is
treated as a feature.
Before splitting the file source code into a set of words rep-
resenting the features we run a preprocessing step. Certain
blocks in the source code files are likely to pollute the pre-
diction model. Such blocks are, for instance, the comments.
Indeed, we believe that it is rather unlikely that comments
could have an impact on the vulnerability of a file. Hence, in
a preprocessing step we filter out all the comments from the
source. For the same reasons, we also filter out all strings
and numerical values.
In order to transform the preprocessed source code into a
feature vector, we need to tokenize the textual representa-
tion of the source into a set of monograms. As a set of
delimiting we have chosen to use not only white spaces, but
also the Java “punctuation” characters (such as, “. , ;) (} {
] [”) as well as mathematical and logical operators (such as,
“+ - / * ˆ | || & && !”). In a feature vector each monogram
(i.e., feature) must also have an assigned value. We use the
count of a given monogram in a given file source code as its
value.
Consider the figure 1 that depicts the HelloWorld.java file.

Figure 1: Hello World Java File

In order to transform this file into a corresponding feature
vector we filter out all the comments from this file as well as
the “Hello World!” string. What remains from the source
of this file is tokenized into a feature vector that treats each
monogram as a feature. Hence, the feature vector of the
HelloWorld.java file becomes:

class:1, HelloWorldApp:1, public:1, static:1,
void:1, main:1, String:1, args:1, System:1, out:1,
println:1

where each of the monograms is followed by a count (in
this case 1). Note that in this example we do not follow any
particular (e.g., SVM) notation.
During the learning phase each file represented as a feature
vector also has a vulnerability label assigned to it. We use
this training set to build a prediction model. Throughout
this paper we consider a binary classification scheme where
a file is either classified as vulnerable or clean. Once the
prediction model is created from the training set, we can
use this prediction model to predict the vulnerability of ar-
bitrary files each represented as a feature vector.
We have leveraged the concept of the support vector ma-
chine (SVM) for both the training phase where a prediction

model is built from a set of training examples, and the pre-
diction phase where a feature vector is classified based on
the previously built prediction model. In our initial explo-
ration, we have used a radial basis function with a set of
parameters (cost and gamma) that are selected by running
a grid search algorithm. The precise details of the training
algorithm are out of the scope of this paper.

4. PRELIMINARY RESULTS
We have performed an initial exploration of the presented

approach using a concrete application. In this section, we
briefly present the preliminary results of our investigation.

4.1 Application
Market analysis has shown that consumers are purchas-

ing more smart phones than PCs since the last quarter of
2010 [1]. Hence, a potential vulnerability in any mobile ap-
plication may affect a huge number of users. Most of these
mobile applications are running on the Android platform [7].
This is why we have chosen to investigate the vulnerabilities
of mobile applications developed for the Android platform.
Repositories containing a large version history of open source
mobile applications for the Android platform are readily
available and represent an ideal testbed for our approach.
For the purposes of our initial exploration, we have selected
to use 19 versions of the K9 mail client application spread
over the period of 22 months. The timespan between each
version is approximately one month. We have used the first
version in order to build the prediction model and we have
predicted the vulnerabilities of the files of each subsequent
version using this prediction model.
In order to assign the vulnerability labels we have lever-
aged the state-of-the-practice Fortify tool [3] that analyzes
the source code for various known types of software security
vulnerabilities. Fortify not only spots a vulnerability, but
also assigns a severity for each vulnerability found. In our
exploratory work, we have treated a file as vulnerable if For-
tify has assigned any type of vulnerability to it and as clean
otherwise. By using Fortify we rely on vulnerabilities that
are extracted during a static analysis of the source (based
on common vulnerabilities and exposures) rather than re-
ported vulnerabilities. There are systematic studies that
have shown that there are strong correlations between such
static analysis metrics and the quantity of subsequently re-
ported vulnerabilities [6]. Nevertheless, this issue is rather
controversial as commercial tools are said to produce high
false positives [2].

4.2 Results
We have used the version k9-2.504 to build the prediction

model. We assessed the model performance (in terms of
prediction power) by means of three indicators:

• Accuracy is the percentage of correct results.

• Precision is the probability that a file classified as vul-
nerable is indeed vulnerable.

• Recall is the probability that a vulnerable file is clas-
sified as such.

Figures 2 and 3 illustrate the initial results that we have ob-
tained. The main observation is that the prediction model
scores very high (above 80%) for all three indicators. Figure

2 also shows the positive rate of the application, i.e., the per-
centage of vulnerable files, which is between 40% and 60%.
Therefore, a “naive” classifier that classifies all files as vul-
nerable (or alternatively as clean) would achieve a precision
in the range of 40% to 60% as well. This range is a base-
line for the accuracy indicator and our approach performs
substantially better compared to the baseline.

Figure 2: Accuracy vs % of vulnerable files identified
by fortify

Figure 3: Precision vs recall

Finally, note that the number of files grows substantially
from the first training set used to build the prediction model
(97 Java files in k9-2.504) to the last version (177 Java files
in k9-3.991). Hence, in the testing phase, the model is also
classifying many new files that were not present in the train-
ing set.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a novel approach that

can predicts the vulnerability of a file based on its source
code. As opposed to a number of current state-of-the-art ap-
proaches that build a vulnerability prediction model based
on a certain characteristic (e.g., software metrics) of the
source code, our approach treats each“word”in the source as
a feature. We have explored this approach on an open source
mobile application, i.e., K9 email client for the Android plat-
form. Our initial results indicate that the proposed approach
has very values for accuracy (average of 0.87), precision (av-
erage of 0.85) and recall (average of 0.88). These results are
very promising and encourage further research in this area.

In the future, we plan to further investigate the presented
approach by looking at various alternatives in building the

feature vector. We also plan to investigate the possibilities
to build a vulnerability prediction model that uses the six-
class classification supported by Fortify (i.e., non-vulnerable,
vulnerable with severity 1 to 5). Finally, we believe that
our approach is complementary to using the existing tech-
niques that use, e.g., internal metrics for building a predic-
tion model. Hence, an even more interesting research track
would be to expand our approach to use a feature vector
that consists both of the complete source code treated as
text and a list of code metrics.

6. REFERENCES
[1] Android rises, symbian and windows phone 7 launch as

worldwide smartphone shipments increase 87.2% year
over year, according to idc (2011),
http://www.idc.com/

[2] Austin, A., Williams, L.: One technique is not enough:
A comparison of vulnerability discovery techniques. In:
ESEM. pp. 97–106 (2011)

[3] Fortify: Fortify. https://www.fortify.com/ (2011)

[4] Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.:
Predicting vulnerable software components. In:
Proceedings of the 14th ACM Conference on Computer
and Communications Security (October 2007)

[5] Shin, Y., Meneely, A., Williams, L., Osborne, J.A.:
Evaluating complexity, code churn, and developer
activity metrics as indicators of software vulnerabilities.
IEEE Trans. Software Eng. 37(6), 772–787 (2011)

[6] Walden, J., Doyle, M.: Savi: Static analysis
vulnerability indicator. IEEE Security and Privacy (to
appear) (2012)

[7] Zeman, E.: Android, ios crush blackberry market share
(2011), http://www.informationweek.com

[8] Zimmermann, T., Nagappan, N., Williams, L.:
Searching for a needle in a haystack: Predicting security
vulnerabilities for windows vista. In: Proceedings of the
3rd International Conference on Software Testing,
Verification and Validation (April 2010)

